

Volume Conductor

Lesar, Žiga; Alharbi, Ruwayda; Bohak, Ciril; Strnad, Ondřej; Heinzl, Christoph; Marolt, Matija;
Viola, Ivan

Published: 15/06/2022

Link to publication in pure

Citation for published version (APA):
Lesar, Ž., Alharbi, R., Bohak, C., Strnad, O., Heinzl, C., Marolt, M., & Viola, I. (2022). Volume Conductor:
Interactive Visibility Management for Crowded Volumes.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2024

https://pure.fh-ooe.at/en/publications/486a5960-5115-4eaa-8fc7-5c0c869cb7ad

Volume Conductor: Interactive Visibility Management for
Crowded Volumes

Žiga Lesar1 � Ruwayda Alharbi2 � Ciril Bohak1;2 � Ondřej Strnad2 �
Christoph Heinzl3 � Matija Marolt1 � Ivan Viola2

Abstract We present a novel smart visibility system
for visualizing crowded volumetric data containing many
object instances. The presented approach allows users
to form groups of objects through membership pred-
icates and to individually control the visibility of the
instances in each group. Unlike previous smart visibil-
ity approaches, our approach controls the visibility on a
per-instance basis and decides which instances are dis-
played or hidden based on the membership predicates
and the current view. Thus, cluttered and dense vol-
umes that are notoriously difficult to explore effectively
are automatically sparsified so that the essential infor-
mation is extracted and presented to the user. The pro-
posed system is generic and can be easily integrated into
existing volume rendering applications and applied to
many different domains. We demonstrate the use of the
volume conductor for visualizing fiber-reinforced poly-
mers and intracellular organelle structures.

Keywords volume visualization, visibility manage-
ment, crowded volumes

1 Introduction

Surface rendering methods used in modern 3D applica-
tions typically focus on object boundaries and thus pro-
vide insufficient insight into volumetric datasets found
in many branches of science. Such volumetric datasets

1Faculty of Computer and Information Science,
University of Ljubljana, Večna pot 113,
1000 Ljubljana, Slovenia
2Visual Computing Center,
King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
3University of Applied Sciences Upper Austria,
Roseggerstraße 15, 4600 Wels, Austria

can be visualized with direct volume rendering (DVR)
methods, which are often coupled with visibility man-
agement techniques to reveal or emphasize specific struc-
tures or regions of interest. Examples include transfer
function specification, planar reformation, clipping ge-
ometry, cutaway views, exploded views, and spatial de-
formations.

In many cases, a volume is densely populated with
numerous instances of structures that occlude each other,
and the absence of visibility management results in an
uninterpretable and cluttered image. We call such vol-
umes crowded volumes. Examples include scans of poly-
crystalline materials, fiber-reinforced polymers, and in-
tracellular biological structures. For such data, existing
volume rendering methods are not suitable because the
amount and density of the instances are so high that oc-
clusion impedes the spatial perception of patterns and
distributions in the data. Usually, no single instance
is of particular interest, but rather their distribution
inside the volume; therefore, a suitable visibility man-
agement strategy is to sparsify the volume by remov-
ing or fading some instances. The instances are often
characterized by additional attributes, such as volume,
surface area, orientation, position, and others, and the
users are typically interested in investigating the spatial
distribution of the instances with specific attributes.

For the visualization of such volumes, we propose
the volume conductor, a novel interactive exploration
and visibility management system for crowded volumes.
With the volume conductor, the user directs the color
and visibility of groups of instances to obtain the de-
sired visualization of a crowded volume. The volume
conductor provides an easy-to-use user interface for form-
ing groups of instances and managing their visibility.
The user can directly adjust the sparsification of each
group through manipulation of scented sliders [27]. The

ar
X

iv
:2

20
6.

07
39

2v
1

 [
cs

.G
R

]
 1

5
Ju

n
20

22

2 Žiga Lesar1 et al.

Fig. 1: Features of the volume conductor. From left to right: instance grouping and colorization, sparsification,
ghosting, blending with raw data, and opacity transfer from sparsification to raw data.

sparsification routine automatically determines which
instances are visually suppressed and which remain vis-
ible, which is a significantly different process compared
to transfer-function-based visibility management, where
the visibility is implicitly controlled. The user can rapidly
achieve the desired visualization by organizing instances
into a hierarchy according to their attributes. We also
present a technique for combining the resulting sparsi-
fied volume with the raw data volume, which enables
integration of the volume conductor with existing DVR
techniques. An overview of these features is presented in
Fig. 1. The sytem is generic and can be applied to many
domains, which we demonstrate on three use cases.

We emphasize the following original contributions
of our work:

– rendering-method-independent interactive visibility
management system for visualizing crowded volumes;

– combined rendering of sparsified segmented volumes
and raw data volume for providing the context of
displayed instances within the raw data;

– procedural generation of GPU shader code based
on user-defined hierarchically organized instance at-
tributes;

– domain-expert-defined use cases showcasing the ben-
efits of the proposed system;

2 Related Work

A volume is a dense representation exhibiting a high
degree of mutual occlusion among the contained struc-
tures. Visiblity in volumes is usually directed with trans-
fer functions [16]. Traditionally, transfer functions map
the intensities and their gradients to optical properties
without awareness of the individual instances, and as
such do not solve the occlusion problem. To prevent the
occlusion of important information and provide enough
context for better spatial comprehension, smart visi-
bility management techniques are integral part of vol-
ume visualization frameworks. Standard techniques in-
clude clipping planes, cutaway views, and automatic

or interactive transfer function specification. Early ap-
proaches addressed the problem of the automatic gen-
eration of see-through technical illustrations [4,5] with
view-dependent transparency techniques. Image-space
depth sorting is used to generate semi-transparent visu-
alizations, combined with the existing rendering meth-
ods. Viola et al. [24] discussed how to visually expose
essential parts of the data in volumetric renderings with
an importance-driven feature enhancement technique
enabling the automatic generation of cutaway and ghost
views. Ament et al. [1] used selective illumination to
automatically highlight important structures in a vol-
ume and make them visible from the camera. Moreover,
Ropinski et al. [19] presented volumetric lenses for inter-
actively enhancing interesting volume regions. Kubisch
et al. [13] used breakaway views and ghost views, on a
practical use case of tumor surgery planning. In addi-
tion, Chan et al. [3] explored spatial relations between
the structures in a volume and suggested techniques for
visualization.

While these techniques allow users to expose parts
of the data in different ways, they do not offer pre-
cise control over which data should be exposed and to
what degree. Moreover, none of these explicitly target
crowded volumes and thus are not particularly useful
for visualizing such data. In the best case, extensive
preprocessing is necessary to prepare the data for vi-
sualization using a specific method. In contrast, our
proposed approach offers interactive sparsification with
minimal preprocessing and is independent of the ren-
dering method.

Context-preserving methods consider critical aspects
of the visualization and retain them regardless of the
view and data orientation. The magic volume lens [17]
retains the context by deformation, instead of removal
of structures, where the user selects the magnifying
part. Krüger et al. [12] presented a distance-based im-
portance mapping of transparency to preserve the con-
text surrounding the focused part of the data. A context-
preserving method by Bruckner et al. [2] introduces an
easily controlled context-preserving approach consider-

Volume Conductor: Interactive Visibility Management for Crowded Volumes 3

ing the shading intensity, gradient magnitude, eye dis-
tance, and previously accumulated opacity to reduce
the opacity of less essential regions of the volume. This
method is also adapted for one of the proposed sparsifi-
cation functions, where it is used to control the impor-
tance of entire instances rather than individual voxels.

Context-preserving approaches work well on uncrow-
ded data. However, for crowded volumes, their use alone
is not enough to present and retain a global context
around specific instances in a crowded environment. We
complement the existing contributions by extending the
voxel-based view of the data to an instance-based view
through aggregation over the instances.

Streamline visualization is aiming towards automatic
selection and rendering of the most representative in-
stance in a crowded environment. Günther et al. [6]
addressed the problem by optimizing the streamline
opacity, extended it for visualizing surfaces [8], sets of
streamlines [7], and a joint dataset with points, lines,
and surfaces [9]. Kanzler et al. [11] estimated a view-
dependent visibility of the streamlines in screen space
on a GPU roughly based on screen-space occupancy
maps by Marchesin et al. [18] to handle line density
control. Streamlines typically represent the properties
of a continuous vector field, which is not the case for
presented data, meaning we cannot use same sparsifi-
cation approach. Moreover, these methods do not offer
the user explicit control over the grouping, sparsifica-
tion and emphasis of instances for which the volume
conductor was explicitly designed.

Le Muzic et al. [14] introduced visibility equalizers
as a tool to interactively sparsify mesoscopic biological
data. Their data consist of molecular instances orga-
nized into a hierarchical representation. The visibility
of these hierarchical groups is estimated in real time
and can be adjusted through sliders. Visibility equaliz-
ers form the basis for a more general concept of the vol-
ume conductor presented in this paper. The approach
supports only structurally identical hierarchically orga-
nized instances already and renders them through the
instancing-enabled graphics pipeline. Instances are re-
moved either randomly or based on the distance from a
clipping primitive. For the volume conductor, this ap-
proach is generalized as a sparsification function, and
three different sparsification strategies are presented in
this paper. A significant difference is that the volume
conductor operates on instance properties where any
property can be selected for sparsification, thus allow-
ing complete flexibility for users to analyze the data ac-
cording to any property of interest. For visibility equal-
izers, sparsification is hard-bound to the hierarchical
scene arrangement, and no additional properties can be
used for sparsification. In the volume conductor, this

is enabled through the authoring environment, where
properties are selected and organized into hierarchies.
The reason for this is that the volume conductor ad-
ditionally targets exploration and analytical scenarios,
whereas visibility equalizers were primarily concerned
with the communicative visualization intent.

In summary, although related to crowded environ-
ments, all of these methods fail to address crowded
volumes and interactive exploration. Our contribution
provides the user with complete control over instance
grouping, sparsification, and rendering. While other ap-
proaches assume specific structures (e.g., streamlines or
molecules), the volume conductor is domain-agnostic
and does not pose any constraints on the structures
and their properties. We support our claims with three
use cases.

3 Volume Conductor

The volume conductor is an explicit visibility manage-
ment technique for volumetric data, where the user
forms groups of instances based on their attributes and
controls the visibility of the instances with scented slid-
ers [27] to communicate how many of them should be
visible under the current transfer function and camera
settings. This information is used by the sparsification
procedure when determining the visibility of each in-
stance. The architecture of our solution is displayed in
Fig. 2. Two volumes are required at the input: the raw
data volume and segmentation volume. In the latter,
each voxel is assigned a numerical identifier correspond-
ing to an individual instance or the background. As the
segmentation process is not part of our pipeline, we do
not propose any particular segmentation technique, and
a suitable one can be chosen based on the given domain.
Every instance may hold a set of additional attributes,
such as length, volume, surface area, and orientation,
supplied with the two volumes.

The user first forms groups of instances by specify-
ing a list of group membership predicates, which assigns
each instance to a group. Depending on the user’s vi-
sualization goals, the groups may contain instances of
interest with specific attributes, instances that are less
relevant and are to be sparsified, or even those that
represent unwanted information, such as segmentation
errors or noise. To facilitate this task, we developed
an easy-to-use user interface for manipulation of group
membership predicates (we discuss it in Sec. 3.1). Af-
ter the groups are formed, the user assigns a color,
opacity, and visibility ratio to each group. The colors
may include transparency if the user wants a partially
transparent group of instances. The visibility ratio is

4 Žiga Lesar1 et al.

Fig. 2: High-level overview of the volume conductor. Raw and segmented data pass through the grouping and
sparsification procedure to generate the visibility mask, which is then rendered along with the raw data. Visibility
is assessed from the rendered image and used to update the user interface. Circled numbers indicate section
numbers, where that part of the volume conductor is described.

used in the sparsification procedure when determin-
ing the number of shown and hidden instances in that
group. The user can choose between various sparsifica-
tion functions to control which instances are affected.
The sparsification procedure and various sparsification
functions are discussed in Sec. 3.2. Based on the group
membership predicates, the visibility mask (a volume
that encodes the visibility and group membership of
every voxel) and a corresponding transfer function are
generated for rendering. Their format and the gener-
ation process are described in Sec. 3.3. The visibility
mask can be visualized with any existing volume ren-
dering method, and we demonstrate this by integrating
the volume conductor into directional occlusion shading
(DOS) [20] and path tracing renderers. Finally, the user
can blend the raw data into the visualization to display
information lost during segmentation or to enhance the
raw data rendering with the capabilities of the volume
conductor. The rendering process and blending are cov-
ered in Sec. 3.4. As the sparsification procedure does
not consider occlusion between the instances when de-
termining their visibility, we perform visibility assess-
ment by computing the actual visibility ratio of each
group as observed from the camera. The ratio is cal-
culated by rendering the segmentation volume into an
ID frame buffer and counting the different IDs in each
group. This information is fed back into the user in-
terface, forming a feedback loop with the user and en-
suring that the user settings are accurately reflected in
the rendered image. This process is explained in more
detail in Sec. 3.5.

3.1 Instance grouping

A group membership predicate may be any Boolean
expression that signals instance membership in a group
based on its attributes. There is precisely one group
for every predicate plus one additional group for the
background. When computing the visibility mask, these
predicates are traversed to distribute the instances into
groups. If an instance satisfies several predicates, the
one evaluated first defines the group of that instance;
therefore, each instance belongs to exactly one group.
If an instance does not satisfy any predicates, it is as-
signed to the background group.

Group membership predicates are defined in run-
time by the user. To simplify the user interface, we
decided to allow only predicates of a specific format
easily represented in the user interface. Every predi-
cate includes the following information that the user
can adjust:

– the instance attribute that this predicate is based
on,

– a series of ranges that the attribute value may fall
into,

– the color of the group used when generating the
group transfer function, and

– the visibility ratio between the number of shown and
hidden instances in the group.

We provide two ways of defining the group member-
ship predicates: sequential and hierarchical. A sequen-
tial set of predicates can be directly used to generate the
visibility mask, whereas a hierarchical set must first be
linearized. In this context, the child predicates of a sin-
gle parent predicate form a disjunctive relation between
themselves, whereas the nesting of the predicates signi-

Volume Conductor: Interactive Visibility Management for Crowded Volumes 5

Fig. 3: User interface for instance grouping with an
example hierarchy. The user built an abstract hierar-
chy from two attributes: volume and orientation (three
value ranges each). The hierarchy with the sparsifica-
tion and coloring controls for each group is presented
below.

fies a conjunctive relation between the parent and child
predicates. The evaluation of child predicates is short-
circuited so that every child predicate is only evaluated
if an instance also satisfies the corresponding parent
predicate. Finding the first available group amounts to
finding an admissible path in the hierarchy from a root
predicate to a leaf predicate. This form of manipula-
tion complies with a typical workflow to a large degree,
where the user first broadly divides the instances into
several groups and refines them with further subdivi-
sions.

The user interface for group membership predicate
manipulation is illustrated in Fig. 3. First, the user
builds a hierarchy of attributes and defines a set of value
ranges for each attribute. This form is expanded to ob-
tain a copy of the value ranges of the children for every
value range of the parent. After expansion, each path
from the root to a leaf node represents a single predi-
cate, where a single value range of a single attribute is
evaluated on each level of the hierarchy.

Once the hierarchy is built, colors and visibility ra-
tios can be applied to the resulting groups. Initially,
each group is assigned a color with a random hue based
on the golden ratio sequence [21]. The user can interac-
tively sparsify the groups by dragging their correspond-

ing visibility ratio sliders. Sliders are assigned to all
nodes of the hierarchy so that the user can change the
visibility ratios of several groups simultaneously. When
the user changes the visibility ratio of a group, the vis-
ibility ratios of the subgroups are updated accordingly,
and vice versa, so that the visibility ratio of the parent
group remains the weighted average of the visibility ra-
tios of the subgroups based on the number of member
instances. A group can also be locked so that it is not af-
fected by such cascaded updates. Following the scented
widget paradigm [27], the scented slider for every group
also depicts a histogram of the values of the correspond-
ing attribute so that the user has a rough idea of the
distribution of the attribute values of visible instances.
The slider contains two additional tracks for the pro-
portion of hidden and occluded instances. These are
calculated in the visibility assessment step described in
Sec. 3.5.

3.2 Instance sparsification

The sparsification procedure determines whether an in-
stance should be visible or hidden. We only consider
binary visibility to keep the user interface simple, al-
though our implementation readily supports partial trans-
parency via the generated transfer function. The spar-
sification procedure is designed as an extension of the
voxel-based methods (e.g., [24,2]) so that the impor-
tance of an instance is the average importance of its
constituent voxels. First, we randomly shuffle the in-
stances to prevent any correlations between their ini-
tial order and spatial distribution. When the sparsifi-
cation begins, every voxel is assigned an importance
value, which is aggregated over the instances. After-
ward, the instances in each group are sorted based on
importance, and those with the lowest importance are
hidden. The number of instances to be hidden is de-
termined by the visibility ratio of the group. The func-
tion that assigns importance to a voxel is called the
sparsification function. We propose three sparsification
functions, each serving a different purpose in the visu-
alization:
– uniform, defined as follows:

pu(x) = 1 ;

which assigns a uniform importance and is used to
sparsify the volume without changing the data dis-
tribution pattern;

– depth-based, defined as follows:

pd(x) = kx � ek ;

which assigns importance based on the distance from
the camera e and is used to create a peeling effect;

6 Žiga Lesar1 et al.

– context-preserving, based on the context-preserving
model [2] defined as follows:

pc(x) = kr V (x)k(�t �s(x)�pd (x))� s
:

See below for a detailed explanation of the different
quantities.
Uniform sparsification keeps the spatial distribution

of the instances unchanged, whereas depth-based spar-
sification reveals the internals of the volume similar to
a cutaway plane, but without cutting through the in-
stances (see Fig. 7 and the online supplemental ma-
terial1). To balance the two effects, we adapted the
context-preserving model [2], which exhibits a similar
cutaway plane functionality while allowing us to adjust
the sharpness and depth of the cutaway. In the original
paper, the context-preserving method was used to re-
duce the opacity of the less critical samples, whereas we
instead use it to compute the importance of an entire
instance. Conceptually, the model places a virtual light
into the scene and assigns less importance to instances
that receive considerable amount of light, are located
closer to the camera, and are internally more homoge-
neous. The virtual light acts as a melting source that
more strongly affects the instances with a smaller pro-
jected area toward the light. This outcome is a direct
consequence of the shading factor s(x), for which we use
the Blinn-Phong shading model. To keep the user inter-
face simple, we place the virtual light at the same posi-
tion as the camera, though it could be placed anywhere.
Furthermore, the parameter � t controls the depth of
the cutaway plane, where higher values correspond to
deeper cuts, while the parameter � s controls the sharp-
ness of the cut where higher values result in a sharper
cut. When � t is zero, this function reduces to uniform
sparsification. The gradient magnitude kr V (x)k acts
as an indicator of homogeneity of the data, so a more
heterogeneous instance is regarded as more important.

Each of the presented sparsification functions has
specific uses, and the power of this approach comes from
the ability to combine them. When the density of the in-
stances is extremely high, the user might choose to first
bring it down to a reasonable level with uniform spar-
sification, and then use a more sophisticated approach,
such as depth-based or context-preserving sparsifica-
tion, as these are view-dependent. To achieve this, our
method tracks which instances have already been hid-
den and prioritizes them during sorting. Consequently,
the user can change the sparsification function on the
fly and layer the results without any additional controls
in the user interface. Refer to the supplementary video
demonstrating this feature.

1 https://github.com/UL-FRI-LGM/vpt-conductor/raw/
master/supplemental.pdf

3.3 Visibility mask

To render the groups of instances, we introduce an in-
termediate representation called the visibility mask that
encodes the visibility of instances, their group mem-
bership, and the color and transparency for rendering.
Formally, the visibility mask is a map from R3 to R2,
constructed so that the voxels belonging to different
groups (including the background) map to different 2D
vectors. We store the visibility mask as a volume on
the GPU. We generate a corresponding transfer func-
tion and use the 2D vectors from the visibility mask as
texture coordinates for the transfer function, matching
traditional post-classification volume rendering. Conse-
quently, we can use any existing volume rendering al-
gorithm to render the visibility mask. In general, the
2D vectors in the visibility mask may be arbitrary, as
long as different groups of instances map to different
vectors. To make the best possible use of the avail-
able transfer function space, we decided to arrange the
values in a circular pattern, as illustrated in Fig. 4.
The background is mapped to the center of the trans-
fer function, whereas the individual groups are spread
uniformly around the inscribed circle. These locations
are denoted as maskValue and are defined as follows:

maskValue(k) =

(
(1

2 ; 1
2); k = 0 ;

(1
2 ; 1

2) + (1
2 cos�; 1

2 sin �); k > 0;

� =
2� (k � 1)

N
;

where k is an index of a group (with zero being the back-
ground), and N is the total number of groups. This ar-
rangement ensures an uninterrupted interpolation path
between the mask values of each group and the back-
ground, preventing any classification-related artifacts
at instance boundaries, which would not be possible
with a 1D transfer function. Intergroup boundaries may
still cause slight rendering artifacts; however, they were
barely noticeable in the use cases, and correct treatment
would necessitate a far more complex solution, such as
the one by Al-Thelaya et al. [23].

We compute the visibility mask on the GPU with
a procedurally generated compute shader, which makes
our approach fast, general, and easily extensible. The
list of group membership predicates translates into a se-
quence of if statements that takes an instance with its
attributes as input and outputs the mask value of the
corresponding group (see Fig. 5 and the algorithm in
the online supplemental material1). The if statements
are augmented so that sparsification is included by as-
signing the mask value of the background to the hidden
instances. The compute shader is run for all voxels to

https://github.com/UL-FRI-LGM/vpt-conductor/raw/master/supplemental.pdf
https://github.com/UL-FRI-LGM/vpt-conductor/raw/master/supplemental.pdf

Volume Conductor: Interactive Visibility Management for Crowded Volumes 7

Fig. 4: Visibility mask values are mapped to the transfer
function in a circular pattern. Straight lines represent
interpolation paths. Paths between the background and
individual groups do not intersect each other.

generate the visibility mask. The corresponding trans-
fer function is generated by wrapping a 1 � N strip
of pixels around the transparent center of the transfer
function (see Fig. 4).

The motivation behind this design lies in the inabil-
ity to interpolate the integer labels of the segmenta-
tion volume. One strategy to overcome this is to use
nearest neighbor sampling, but this would result in a
blocky volume and low-quality image. This problem
was also recognized by Al-Thelaya et al.in a recent con-
tribution [23], but their solution involves considerable
processing time and a specialized rendering algorithm,
as the solution is primarily targeted at data analysis,
not rendering. By contrast, the visibility mask is much
simpler and orders of magnitude faster to compute and
does not necessitate a specialized rendering algorithm.
Additionally, we can leverage hardware interpolation of
the 2D vectors from the visibility mask and use post-
classification during rendering. Thus, we preserve the
high-frequency details in the volume and retain suffi-
cient rendering quality.

3.4 Rendering and blending

The volume conductor is independent of the render-
ing method. We chose to demonstrate its functional-
ity using two rendering methods: directional occlusion
shading [20] because it can simulate direct illumination
at interactive frame rates, and path tracing because it
produces physically realistic results (refer to the online
supplemental material1 for a visual comparison). We
augmented the sampling procedure with blending be-
tween the visibility mask and raw data volume to allow
the user to see the internals of the instances while using
the sparsification functionality. In addition to visibil-
ity mask Vmask and its corresponding transfer function
TFmask, we have raw data volume Vraw and its transfer
function TFraw defined by the user. Both are sampled

to obtain color C and opacity A from position x within
the volume:

(Cmask; Amask) = TFmask(Vmask(x)) ;

(Craw; Araw) = TFraw(Vraw(x)) :

We linearly blend the colors with interpolation weight
wcolor:

C�nal = (1 � wcolor)Cmask + wcolorCraw:

We also subject the opacity of the raw data to sparsi-
fication; therefore, it is treated slightly differently than
the colors. First, we transfer the opacity from the visi-
bility mask to the raw data volume with interpolation
weight wtransfer:

Atransfer = (1 � wtransfer)Amask + wtransferAmaskAraw:

Then, we compute the final opacity as a linear inter-
polation between the transferred opacity and raw data
opacity with interpolation weight walpha:

A�nal = (1 � walpha)Atransfer + walphaAraw:

The user sets all interpolation weights in the user inter-
face. When wcolor and walpha are both 1, this reduces
to raw data volume rendering. When both weights and
wtransfer are 0, only the visibility mask defines the out-
put.

3.5 Visibility assessment

Due to the occlusion and perspective projection, the
density of the instances after sparsification often does
not precisely reflect the visibility ratio set by the user.
We measure the actual visibility ratio of the instances
as observed from the camera and inform the user about
the number of occluded instances. We update an ID
frame buffer during rendering, which holds the ID of the
nearest visible instance for every pixel and the group to
which it belongs. We measure the number of visible in-
stances in each group by counting the unique instance
IDs from the group present in the ID frame buffer. We
know the total number of instances in each group and
the number of hidden instances; thus, we also know how
many instances from that group are occluded. This in-
formation is presented to the user through an additional
track under the scented slider (see Fig. 3).

4 Implementation Details

With the focus on making the method interactive, we
implemented the computationally intensive parts on the
GPU and integrated them into the VPT framework [15]
using WebGL 2.0 Compute2. We also retained the abil-

2 https://github.com/UL-FRI-LGM/vpt-conductor

https://github.com/UL-FRI-LGM/vpt-conductor

8 Žiga Lesar1 et al.

Fig. 5: Shader generation from group membership predicates. The predicate list is converted to a sequence of if-else
statements that assign a mask value to the voxels of the segmentation volume. The visible array is the result of
sparsification and indicates whether an instance should be shown or hidden. The transfer function corresponding
to the mask values is generated.

ity to perform hardware sampling and interpolation to
ensure the method remains independent of the render-
ing technique. We store the segmentation volume on the
GPU as a 3D texture of 32-bit unsigned integers (for-
mat R32UI) and their respective attributes in a shader
storage buffer object (SSBO). The layout and format
of the data in the SSBO are such that it directly maps
to an array of structs in a shader, where each struct
holds the attributes of a single instance. Thus, each in-
teger value from the segmentation volume acts as an
index for accessing the attributes of the corresponding
instance. As the layout of the struct varies between
datasets, it must be supplied along with the volumes
and instance attributes. We use a simple JSON file
with the attribute names and types, which is enough
to generate the struct definition in GLSL. We access
the instance attributes in the procedurally generated
compute shader when generating the visibility mask.
As displayed in Fig. 5, the group membership predi-
cates translate directly into a sequence of GLSL if-else
statements, which assign a mask value to every voxel in
the visibility mask, similar to the approach by Schulte
zu Berge et al. [22], although our predicates are not
used during rendering but instead are employed to gen-
erate the visibility mask. We store the resulting visi-
bility mask on the GPU as a 3D texture of 2D 8-bit
normalized integer vectors. We use the format RGBA8
because it is one of the few that can be written to us-
ing a WebGL 2.0 compute shader (in contrast to RG8,
which would be more appropriate), and it allows hard-
ware interpolation. The compute shader is regenerated
after every change in the group membership predicates.
The shader execution is independent between voxels, so
no communication is needed between the workgroups,
and the size of the workgroups may be arbitrary. In our
implementation, we chose 16� 16 � 1 because it maps
reasonably well to most modern hardware.

5 Results

5.1 Performance evaluation

We evaluated the volume conductor on three comput-
ers: a laptop with Intel HD Graphics 530 integrated
graphics with 20 GB of shared RAM, a desktop com-
puter with an Nvidia GeForce GTX 1060 graphics card
with 6 GB of RAM, and a professional workstation with
an Nvidia Quadro RTX 8000 graphics card with 48 GB
of RAM. Three datasets were used: fibers, pores, and
mitochondria, presented in Sec. 5.2. We measured the
time of execution of the following three steps:

1. linearization of the predicate hierarchy and shader
recompilation,

2. visibility mask computation, and
3. rendering with directional occlusion shading.

The measurements were executed 10 times (10 lineariza-
tions, 10 visibility mask computations, and 10 rendered
frames), and the average time per step was recorded.
We used the Google Chrome web browser version 87.
The evaluation was performed for a nontrivial predicate
hierarchy with two layers and five ranges for each layer.
The camera was configured so that the volume filled
the screen. This configuration is essential because the
rendering time is highly view-dependent. All measure-
ments are gathered in the appendix, and the measure-
ments for the integrated graphics are presented graph-
ically in Fig. 6.

The performance evaluation demonstrates that the
presented approach remains interactive on platforms
with varying capabilities. Fig. 6 and the related graphs
in the supplemental material1 show much better per-
formance of the dedicated graphics hardware. The vis-
ibility mask computational time is proportional to the
volume size, and the rendering time is proportional to

Volume Conductor: Interactive Visibility Management for Crowded Volumes 9

Fig. 6: Performance evaluation for three datasets: fibers,
pores, and mitochondria on a laptop computer with in-
tegrated graphics. The times to compute the visibil-
ity mask and render the image are listed. Linearization
and shader recompilation times are negligible and not
depicted in the graph.

the frame buffer resolution, both of which conform to
expectations. The measurements reveal one peculiar-
ity in the shader rebuild time, which is substantially
smaller for integrated graphics than dedicated graphics
hardware. This discrepancy is likely caused by the addi-
tional communication time between the CPU and ded-
icated GPU. Due to the nonoptimized implementation,
the most computationally intensive part of the volume
conductor is the rendering process. Keep in mind that
the rendering method can be easily swapped. The vis-
ibility mask computation time is more relevant to the
evaluation of the method than rendering time, and is
low enough for interactive use even on commodity hard-
ware. In fact, in a realistic scenario, the visibility mask
is recomputed only when the user modifies the instance
groups or the visibility ratio of a group, but not during
rendering.

5.2 Use cases

We tested the volume conductor on two domains: fiber-
reinforced polymers in the field of material science and
intracellular organelles in the field of microbiology. Vol-
umetric images from both domains are crowded and,
therefore, a perfect fit for the volume conductor. We
collaborated with experts from these two fields and in-
structed them to use the volume conductor in their
daily workflow. After a few days, we gathered their
feedback and asked them to state the advantages and
disadvantages of the method.

Fig. 7: Fiber use case. From left to right: colorization of
short (red) and bent (blue) fibers, the same as previous
but with 50 % of the remaining fibers hidden by the
depth from above, and colorization by orientation, the
same as previous but with 80 % of the vertical fibers
hidden with the context-preserving model.

5.2.1 Material Science

Fiber-reinforced polymers are in high industrial demand
due to their strength, durability, elasticity, and low weight,
and the demand is steadily growing [10]. Their physical
properties are directly related to the distribution and
density of internal structures, such as fibers, inclusions,
and pores, and their properties, such as length, volume,
and orientation. Therefore, a tool that can isolate and
visualize structures with specific properties is crucial for
scientists to analyze and improve the materials. In this
domain, a typical imaging technique is the 3D X-ray
CT. DVR renderings of the resulting volumes are often
difficult or even impossible to interpret due to crowd-
edness. Specialized analysis tools are available, such as
Feature Scout [26].

We considered two datasets: (1) a 400� 401� 800
volume containing 3828 glass fiber instances with 18
attributes each, and (2) a 512� 512� 512volume con-
taining 6888 instances of pores between carbon fibers
with 41 attributes each. The use cases were provided
by the University of Applied Sciences, Upper Austria,
a research associate with three years of experience and
a senior researcher with more than 15 years of experi-
ence in material science data visualization. The experts
compared the use of Feature Scout and volume con-
ductor on two use cases commonly encountered in their
everyday work. They were also involved in the design
process for both systems and had good insight into their
functionalities.

Use Case 1 – Fiber analysis In glass-fiber-reinforced
materials, fiber characteristics must be analyzed, and
the spatial distribution of the fibers with specific prop-
erties must be determined. In a strong material, the
fibers are uniformly oriented and uniformly distributed
across the volume. Short and bent fibers that do not

10 Žiga Lesar1 et al.

Fig. 8: Use case with pores. From left to right: coloriza-
tion by roundedness (needle-shaped pores are red), the
same as previous but with 50 % of the needle-shaped
pores hidden by depth, and ghosting.

contribute to the strength of the material can be quickly
identified by colorization (Fig. 7, two left images). The
interactive sparsification feature of the volume conduc-
tor can be used to obtain a general overview of the
directional distribution of the fibers (Fig. 7, right two
images).

Use Case 2 – Pore analysis In carbon-fiber-reinforced
polymers, the existing pores inside the material must
be examined, especially their shape and spatial distri-
bution. For example, needle-shaped pores have a higher
potential for crack initiation than elliptical or spherical
pores. With both the volume conductor and Feature
Scout, an appropriate categorization can be constructed
to obtain a visual overview of the needle-shaped pores
by categorizing the instances according to shape (Fig. 8,
two left images). In contrast to Feature Scout, the vol-
ume conductor provides interactive sparsification for a
better overview of the pore distribution.

After using the volume conductor, the material sci-
ence experts came to the following conclusions:

– Uniform sparsification primarily helps when sparsi-
fying the crowded volume of fibers while maintain-
ing the distribution of the instances throughout the
volume.

– View-aligned sparsification functions (depth-based
and context-preserving functions) are beneficial dur-
ing exploration of the internals of the volume (Fig. 8,
right two images). The ability to layer them on top
of uniform sparsification is a very powerful feature.

– On-the-fly changes to the membership predicates
accelerate the exploration process because the user
can add additional predicates and refine the visual-
ization at will, which is much more tedious in Fea-
ture Scout.

– The ability to select individual instances directly in
the rendering and inspect their attributes is missing.

The experts claim that sparsification is an invaluable
tool for data exploration in both use cases because it
allows them to immediately observe the distribution of

fibers and pores with specific properties. The experts
stated that a featureful tool, such as Feature Scout,
could benefit from the volume conductor and help them
in their everyday workflow.

5.2.2 Cell biology

We tested the volume conductor on a 3D microscopy
sample of a cell inside a mouse bladder. The volume was
provided by the Institute of Cell Biology of the Univer-
sity of Ljubljana. Microbiologists at the institute study
the distribution, density, and shape of intracellular or-
ganelles to explore and understand various cellular pro-
cesses. In one specific case, they were interested in the
mitochondria and endolysosomes regarding their size,
shape, curvature, and possible branchings and narrow-
ings (Fig. 9, middle image). Considering that thousands
of such organelles may exist even in a small subsection
of a cell, scientists need a tool, such as the volume con-
ductor, to visualize and analyze organelles and their
properties.

The 1280� 1024� 1024microscopy sample was seg-
mented, and the features were extracted (see [25] for de-
tails), yielding 3051 instances with 21 attributes each.
The use case was given by the Institute of Cell Biology
at the Faculty of Medicine of the University of Ljubl-
jana: an assistant professor with 16 years of experience
and a professor with more than 30 years of experience.
They are both familiar with the software used in their
fields, such as ImageJ and 3D Slicer. They tested the
volume conductor in a one-day test run under the super-
vision of one of the authors. The professors compared
the volume conductor with the software stack they use
in their regular work.

Use Case 3 – Mitochondria analysis For analysis and
exploration of the volumetric microbiological data ob-
tained using modern microscopy techniques (e.g., fo-
cused ion beam scanning electron microscopy), researchers
still primarily employ slice-based visualization tools (e.g.,
ImageJ) or regular DVR tools (e.g., 3D Slicer). The
tasks, such as examining the distribution of intracellu-
lar organelles, are very time-consuming and demand-
ing. The volume conductor facilitates these tasks con-
siderably and enables users to perform complex analy-
ses. For example, the shapes, quantity, orientation, and
distribution of mitochondria can be studied using the
grouping and sparsification functionality of the volume
conductor. Additionally, microbiologists can view the
segmented intracellular structures with raw volumet-
ric data, allowing them to visualize the internals of the
organelles in a sparsified environment (Fig. 9, right im-
age).

Volume Conductor: Interactive Visibility Management for Crowded Volumes 11

Fig. 9: Mitochondria use case. From left to right: col-
orization by organelle type (mitochondria are red), col-
orization of branched (red) and thinned (green) mito-
chondria, blending with raw data.

After using the volume conductor, microbiology ex-
perts came to the following conclusions:

– It is beneficial to sparsify the volume and colorize
the instances with specific properties. This method
allows new possibilities both in the visualization and
exploration processes.

– The set of sparsification functions enables easier vol-
ume exploration and provides more refined control
over what to display and what to hide.

– A joint visualization of raw and segmented data of-
fers the user a view of the interior of the segmented
structures without the surrounding clutter.

– A disadvantage is that the user must provide the
segmentation volume and instance attributes, which
are not always available or easily computed or ob-
tained.

– It would be beneficial if such a visualization tool was
coupled with a specialized analysis tool. Specifically,
selecting individual instances by clicking on them in
the rendering and observing their properties would
be a very powerful feature.

6 Discussion

The feedback from both expert groups reveals that the
interactive sparsification functionality is the most valu-
able feature of the volume conductor. The volume con-
ductor provides a means for acquiring a holistic view
of the data before a detailed analysis. It shifts the fo-
cus from a low-level view of the raw data to a high-level
view of the structures and their properties, and the user
interface is designed to support this view. For the ma-
terial science experts, the main benefit of the volume
conductor is sparsification and its independence from
the rendering method, which makes the volume con-
ductor particularly easy to integrate into existing tools.
The volume conductor enhances them with sparsifica-
tion capabilities, as long as at least a crude instance
segmentation is available. According to the microbiol-
ogy experts, this reliance on segmentation availability

is one of the main disadvantages of the volume con-
ductor. Obtaining an accurate instance segmentation is
a tedious process if automatic tools are not available,
and without it, the volume conductor is inoperative.
However, a crude segmentation is often enough to reap
the benefits of the volume conductor. In contrast to
fiber-reinforced polymers, the microbiological use case
revealed a strong need for a joint display of segmented
and raw data.

Experts from both groups pointed out the ease of
use of the volume conductor due to the user interface
designed specifically for this purpose. However, when
using a joint display of segmented and raw data, the
user must still design an appropriate transfer function
for the raw data. This necessity results in a usabil-
ity gap between the two rendering modes. The user
can become lost even in the easy-to-use user interface
when presented with a wide array of possibilities for
the attribute hierarchy, and the confusion only inten-
sifies with a long list of instance attributes. It is not
unusual to compute more than 20 different features for
a single instance. With machine learning, this number
of features is easily surpassed by many orders of mag-
nitude. Machine learning could eventually be used for
automatic instance grouping, colorization, and sparsi-
fication to shield the user from the numerous resulting
possibilities for visualization. However, this is out of the
scope of this paper and will be considered for future
work.

7 Conclusion

We demonstrated how the volume conductor can be
beneficial for exploring crowded volumes compared to
regular DVR. With the proposed method, the user can
group the instances based on simple predicates or a
hierarchy of predicates and interactively adjust their
density to reveal more information about the struc-
ture of the volume and the distribution of instances.
We achieved this by separating instance grouping, visi-
bility mask computation, transfer function generation,
and rendering. The resulting method is general and eas-
ily extensible due to the procedurally generated com-
pute shader. We applied the technique to two domains,
in which the experts reported improvements in their
workflow and exploration process. In the future, we in-
tend to improve the volume conductor with single or
multiple instance selections in the cases where the user
aims to make fine adjustments to the visibility of spe-
cific instances. We also plan a method for automatic or
user-guided instance grouping to make the exploration
process even faster and simpler. We believe the method
will prove invaluable for interactive data exploration in

12 Žiga Lesar1 et al.

many research fields where crowded volumetric environ-
ments are in use.

Acknowledgments

The authors would like to thank Julia Maurer from
the University of Applied Sciences, Upper Austria, for
providing carbon-fiber-reinforced polymer data and the
presented use cases; Samo Hudoklin and Rok Romih
from the University of Ljubljana for providing cell struc-
ture data and the presented use cases. The research was
partially supported by the King Abdullah University of
Science and Technology – award number BAS/1/1680-
01-01, partially by funding from the Austrian Research
Promotion Agency (FFG) within the program line “TAKE
OFF,” FFG grant no. 874540 “BeyondInspection,” and
by research subsidies granted by the government of Up-
per Austria during the “X-Pro” project.

References

1. Ament, M., Zirr, T., Dachsbacher, C.: Extinction-
Optimized Volume Illumination. IEEE Transactions on
Visualization and Computer Graphics 23(7), 1767–1781
(2017)

2. Bruckner, S., Grimm, S., Kanitsar, A., Groller, M.:
Illustrative Context-Preserving Exploration of Volume
Data. IEEE Transactions on Visualization and Computer
Graphics 12(6), 1559–1569 (2006)

3. Chan, M.Y., Qu, H., Chung, K.K., Mak, W.H., Wu,
Y.: Relation-Aware Volume Exploration Pipeline. IEEE
Transactions on Visualization and Computer Graphics
14(6), 1683–1690 (2008)

4. Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in
Interactive Technical Illustrations. Computer Graphics
Forum 21(3), 317–325 (2002)

5. Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive Cut-
away Illustrations. Computer Graphics Forum 22(3),
523–532 (2003)

6. Günther, T., Rössl, C., Theisel, H.: Opacity optimization
for 3D line fields. ACM Transactions on Graphics 32(4),
1–8 (2013)

7. Günther, T., Rössl, C., Theisel, H.: Hierarchical opacity
optimization for sets of 3D line fields. Computer Graphics
Forum 33(2), 507–516 (2014)

8. Günther, T., Schulze, M., Esturo, J.M., Rössl, C.,
Theisel, H.: Opacity Optimization for Surfaces. Com-
puter Graphics Forum 33(3), 11–20 (2014)

9. Günther, T., Theisel, H., Gross, M.: Decoupled Opacity
Optimization for Points, Lines and Surfaces. Computer
Graphics Forum 36(2), 153–162 (2017)

10. Heinzl, C., Stappen, S.: STAR: Visual computing in ma-
terials science. Computer Graphics Forum 36(3), 647–
666 (2017)

11. Kanzler, M., Ferstl, F., Westermann, R.: Line density
control in screen-space via balanced line hierarchies.
Computers & Graphics 61 , 29–39 (2016)

12. Kruger, J., Schneider, J., Westermann, R.: ClearView:
An Interactive Context Preserving Hotspot Visualiza-
tion Technique. IEEE Transactions on Visualization and
Computer Graphics 12(5), 941–948 (2006)

13. Kubisch, C., Tietjen, C., Preim, B.: GPU-based smart
visibility techniques for tumor surgery planning. Inter-
national Journal of Computer Assisted Radiology and
Surgery 5(6), 667–678 (2010)

14. Le Muzic, M., Mindek, P., Sorger, J., Autin, L., Goodsell,
D.S., Viola, I.: Visibility Equalizer Cutaway Visualization
of Mesoscopic Biological Models. Computer Graphics Fo-
rum 35(3), 161–170 (2016)

15. Lesar, Ž., Bohak, C., Marolt, M.: Real-time interactive
platform-agnostic volumetric path tracing in webGL 2.0.
In: Proceedings of the 23rd International ACM Confer-
ence on 3D Web Technology - Web3D ’18, pp. 1–7. ACM
Press, New York, New York, USA (2018)

16. Ljung, P., Krüger, J., Groller, E., Hadwiger, M., Hansen,
C.D., Ynnerman, A.: State of the Art in Transfer Func-
tions for Direct Volume Rendering. Computer Graphics
Forum 35(3), 669–691 (2016)

17. Lujin Wang, Ye Zhao, Mueller, K., Kaufman, A.: The
Magic Volume Lens: An Interactive Focus+Context
Technique for Volume Rendering. In: IEEE Visualiza-
tion, pp. 367–374. IEEE (2005)

18. Marchesin, S., Cheng-Kai Chen, Ho, C., Kwan-Liu Ma:
View-Dependent Streamlines for 3D Vector Fields. IEEE
Transactions on Visualization and Computer Graphics
16(6), 1578–1586 (2010)

19. Ropinski, T., Steinicke, F., Hinrichs, K.: Interactive
Importance-Driven Visualization Techniques for Medi-
cal Volume Data. In: Proceedings of the International
Fall Workshop on Vision, Modeling, and Visualization
(VMV), pp. 273–280 (2005)

20. Schott, M., Pegoraro, V., Hansen, C., Boulanger, K.,
Bouatouch, K.: A Directional Occlusion Shading Model
for Interactive Direct Volume Rendering. Computer
Graphics Forum 28(3), 855–862 (2009)

21. Schretter, C., Kobbelt, L., Dehaye, P.O.: Golden Ratio
Sequences for Low-Discrepancy Sampling. Journal of
Graphics Tools 16(2), 95–104 (2012)

22. Schulte zu Berge, C., Baust, M., Kapoor, A., Navab,
N.: Predicate-Based Focus-and-Context Visualization for
3D Ultrasound. IEEE Transactions on Visualization and
Computer Graphics 20(12), 2379–2387 (2014)

23. Thelaya, K.A., Agus, M., Schneider, J.: The Mixture
Graph-A Data Structure for Compressing, Rendering,
and Querying Segmentation Histograms. IEEE Trans-
actions on Visualization and Computer Graphics 27(2),
645–655 (2021)

24. Viola, I., Gröller, E.: Smart Visibility in Visualization.
In: L. Neumann, M. Sbert, B. Gooch, W. Purgathofer
(eds.) Computational Aesthetics in Graphics, Visualiza-
tion and Imaging, pp. 209–216. The Eurographics Asso-
ciation (2005)

25. Žerovnik Mekuč, M., Bohak, C., Hudoklin, S., Kim, B.H.,
Romih, R., Kim, M.Y., Marolt, M.: Automatic segmen-
tation of mitochondria and endolysosomes in volumet-
ric electron microscopy data. Computers in Biology and
Medicine p. 103693 (2020)

26. Weissenbock, J., Amirkhanov, A., Weimin Li, Reh, A.,
Amirkhanov, A., Groller, E., Kastner, J., Heinzl, C.:
FiberScout: An Interactive Tool for Exploring and Ana-
lyzing Fiber Reinforced Polymers. In: 2014 IEEE Pacific
Visualization Symposium, pp. 153–160. IEEE (2014)

27. Willett, W., Heer, J., Agrawala, M.: Scented Widgets:
Improving Navigation Cues with Embedded Visualiza-
tions. IEEE Transactions on Visualization and Computer
Graphics 13(6), 1129–1136 (2007)

	1 Introduction
	2 Related Work
	3 Volume Conductor
	4 Implementation Details
	5 Results
	6 Discussion
	7 Conclusion

