TY - GEN
T1 - The Relative Confusion Matrix, a Tool to Assess Classifiablility in Large Scale Picking Applications
AU - Balasch, Alexander
AU - Beinhofer, Maximilian
AU - Zauner, Gerald
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/5
Y1 - 2020/5
N2 - For bin picking robots in real logistics installations, the certainty of picking the correct product out of a mixed-product bin is essential. This paper proposes an approach for the robot to efficiently decide whether it can robustly distinguish the product to pick from the others in the bin. If not, the pick has to be routed not to the robot workstation but to a manual picking station. For this, we introduce a modified version of the confusion matrix, which we call the relative confusion matrix. We show how this matrix can be used to make the required decision, taking into account that all other products in the warehouse can be logically ruled out as they are not contained in the bin. Considering only this subset of products would require a re-computation of the standard confusion matrix. With the relative confusion matrix, no such re-computation is needed, which makes our approach more efficient. We show the usefulness of our approach in extensive experiments with a real bin picking robot, on simulated data, and on a publicly available image dataset.
AB - For bin picking robots in real logistics installations, the certainty of picking the correct product out of a mixed-product bin is essential. This paper proposes an approach for the robot to efficiently decide whether it can robustly distinguish the product to pick from the others in the bin. If not, the pick has to be routed not to the robot workstation but to a manual picking station. For this, we introduce a modified version of the confusion matrix, which we call the relative confusion matrix. We show how this matrix can be used to make the required decision, taking into account that all other products in the warehouse can be logically ruled out as they are not contained in the bin. Considering only this subset of products would require a re-computation of the standard confusion matrix. With the relative confusion matrix, no such re-computation is needed, which makes our approach more efficient. We show the usefulness of our approach in extensive experiments with a real bin picking robot, on simulated data, and on a publicly available image dataset.
UR - http://www.scopus.com/inward/record.url?scp=85092749291&partnerID=8YFLogxK
U2 - 10.1109/ICRA40945.2020.9197540
DO - 10.1109/ICRA40945.2020.9197540
M3 - Conference contribution
AN - SCOPUS:85092749291
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 8390
EP - 8396
BT - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Y2 - 31 May 2020 through 31 August 2020
ER -