The discrete adjoint method for parameter identification in multibody system dynamics

Thomas Lauß, Stefan Oberpeilsteiner, Wolfgang Steiner, Karin Nachbagauer

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method, where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

Original languageEnglish
Pages (from-to)397-410
Number of pages14
JournalMultibody System Dynamics
Issue number4
Publication statusPublished - 1 Apr 2018


  • Adjoint method
  • Discrete adjoint method
  • Parameter identification


Dive into the research topics of 'The discrete adjoint method for parameter identification in multibody system dynamics'. Together they form a unique fingerprint.

Cite this