Study of layup influences on the nonlinear behavior of composites by evaluation of ply stiffness reduction

Robin Taubert, Ulrich Mandel, Roland Hinterhölzl

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The influence of the stacking sequence on the nonlinear response of composite laminates is investigated. It is shown that a layup dependency solely emerges from damage evolution mechanisms, whereas damage initiation and viscoelastic and viscoplastic strain accumulation are not affected by the layup. This is a result of a proposed procedure that enables the evaluation of the stiffness reduction on lamina level. The residual ply stiffness components can be determined at large deformations and for various laminates under in-plane loading conditions. A finite element study is utilized to characterize the properties of a ply containing discrete cracks. The relationship between transverse and shear stiffness reduction is derived from the FE results. This allows the combined determination of the residual lamina moduli from an axial laminate stiffness. The analysis approach is validated by angle-ply specimens with different layups.

Original languageEnglish
Pages (from-to)63-73
Number of pages11
JournalComposites Part A: Applied Science and Manufacturing
Volume79
DOIs
Publication statusPublished - 1 Dec 2015
Externally publishedYes

Keywords

  • A. Polymer-matrix composites (PMCs)
  • B. Mechanical properties
  • B. Transverse cracking
  • C. Damage mechanics

Fingerprint

Dive into the research topics of 'Study of layup influences on the nonlinear behavior of composites by evaluation of ply stiffness reduction'. Together they form a unique fingerprint.

Cite this