Statistical analysis of the relationship between spots and structures in microscopy images

Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

1 Citation (Scopus)


Fluorescence microscopy image analysis plays an important role in biomedical diagnostics and is an essential approach for researching and investigating the development and state of various diseases. In this paper we describe an approach for analyzing nanoscale microscopy images in which spots and background structures are identified and their relationship is quantified. A spatial analysis approach is used for identifying spots, then clustering of these spots is performed and those clusters are characterized using a series of here defined features. These cluster characteristics are used for comparing images via statistical hypothesis tests (using the Kolmogorov-Smirnov test for the equality of probability distributions). Moreover, to achieve a better distinction we additionally define features that quantify the relationship of clusters of spots and background structures. In the empirical section we demonstrate the use of this approach in the analysis of microscopy images of brain structures of patients potentially suffering from a neural disease (e.g., depression or schizophrenia). Using the here presented approach we will be able to investigate the development and state of various diseases in a better way and help to find more systematic medication of diseases in the future.

Original languageEnglish
Title of host publicationComputer Aided Systems Theory, EUROCAST 2013 - 14th International Conference, Revised Selected Papers
Number of pages8
EditionPART 1
ISBN (Print)9783642538551
Publication statusPublished - 2013
Event14th International Conference on Computer Aided Systems Theory, Eurocast 2013 - Las Palmas de Gran Canaria, Spain
Duration: 10 Feb 201315 Feb 2013

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume8111 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference14th International Conference on Computer Aided Systems Theory, Eurocast 2013
CityLas Palmas de Gran Canaria

Cite this