TY - GEN
T1 - Sensitivity analysis of impedance measurement alogrithms used in distance protection
AU - Rohadi, Nanang
AU - Zivanovic, Rastko
PY - 2011
Y1 - 2011
N2 - This paper presents the methodology for Global Sensitivity Analysis (GSA) of impedance measurement algorithms that are used in distance protection of transmission lines. The analysis is using Quasi-Monte Carlo technique in calculating variance of the measurement error as well as parts of this variance that are contributed by uncertainty of some parameters. Specifically, fault resistance is the parameter that cannot be measured and it is treated as uncertain. Such parameters are called factors and they are represented with specific distribution function within specified domain of variation. The proposed methodology is implemented using automation of DIgSILENT and SIMLAB programs. The program in DPL scripting language of DIgSILENT is developed to automate simulation of transmission line faults when uncertain factors are varied. Each variation represents a sample in factor space. They are generated using Sobol quasi-random sequence in SIMLAB. This program also calculates variance-based sensitivity indices based on the factor space samples and corresponding simulation results obtained in DIgSILENT. To illustrate this methodology, the paper presents results of the GSA of SEL-412 impedance measurement algorithm implemented as a model in DIgSILENT.
AB - This paper presents the methodology for Global Sensitivity Analysis (GSA) of impedance measurement algorithms that are used in distance protection of transmission lines. The analysis is using Quasi-Monte Carlo technique in calculating variance of the measurement error as well as parts of this variance that are contributed by uncertainty of some parameters. Specifically, fault resistance is the parameter that cannot be measured and it is treated as uncertain. Such parameters are called factors and they are represented with specific distribution function within specified domain of variation. The proposed methodology is implemented using automation of DIgSILENT and SIMLAB programs. The program in DPL scripting language of DIgSILENT is developed to automate simulation of transmission line faults when uncertain factors are varied. Each variation represents a sample in factor space. They are generated using Sobol quasi-random sequence in SIMLAB. This program also calculates variance-based sensitivity indices based on the factor space samples and corresponding simulation results obtained in DIgSILENT. To illustrate this methodology, the paper presents results of the GSA of SEL-412 impedance measurement algorithm implemented as a model in DIgSILENT.
KW - Distance protection
KW - Global Sensitivity Analysis
KW - impedance measurement algorithms
KW - transmission line faults
UR - http://www.scopus.com/inward/record.url?scp=84856840138&partnerID=8YFLogxK
U2 - 10.1109/TENCON.2011.6129260
DO - 10.1109/TENCON.2011.6129260
M3 - Conference contribution
AN - SCOPUS:84856840138
SN - 9781457702556
T3 - IEEE Region 10 Annual International Conference, Proceedings/TENCON
SP - 995
EP - 998
BT - TENCON 2011 - 2011 IEEE Region 10 Conference
T2 - 2011 IEEE Region 10 Conference: Trends and Development in Converging Technology Towards 2020, TENCON 2011
Y2 - 21 November 2011 through 24 November 2011
ER -