Quasi-bistability of walk-based landscape measures in stochastic fitness landscapes

Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

Abstract

Exploratory landscape analysis is a useful method for algorithm selection, parametrization and creating an understanding of how a heuristic optimization algorithm performs on a problem and why. A prominent family of fitness landscape analysis measures are based on random walks through the search space. However, most of these features were only introduced on deterministic fitness functions and it is unclear, under which conditions walk-based landscape features are applicable to noisy optimization problems. In this paper, we empirically analyze the effects of noise in the fitness function on these measures and identify two dominant regimes, where either the underlying problem or the noise are described. Additionally, we observe how step sizes and walk lengths of random walks influence this behavior.

Original languageEnglish
Title of host publicationGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery, Inc
Pages1087-1094
Number of pages8
ISBN (Electronic)9781450356183
DOIs
Publication statusPublished - 2 Jul 2018
Event2018 Genetic and Evolutionary Computation Conference, GECCO 2018 - Kyoto, Japan
Duration: 15 Jul 201819 Jul 2018

Publication series

NameGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference

Conference

Conference2018 Genetic and Evolutionary Computation Conference, GECCO 2018
Country/TerritoryJapan
CityKyoto
Period15.07.201819.07.2018

Keywords

  • Fitness landscape analysis
  • Heuristic optimization
  • Noisy optimization

Fingerprint

Dive into the research topics of 'Quasi-bistability of walk-based landscape measures in stochastic fitness landscapes'. Together they form a unique fingerprint.

Cite this