Abstract
BACKGROUND: Medical diagnosis and prognosis using machine learning methods is usually represented as a supervised classification problem, where a model is built to distinguish "normal" from "abnormal" cases. If cases are available from only one class, this approach is not feasible.
OBJECTIVE: To evaluate the performance of classification via outlier detection by one-class support vector machines (SVMs) as a means of identifying abnormal cases in the domain of melanoma prognosis.
METHODS: Empirical evaluation of one-class SVMs on a data set for predicting the presence or absence of metastases in melanoma patients, and comparison with regular SVMs and artificial neural networks.
RESULTS: One-class SVMs achieve an area under the ROC curve (AUC) of 0.71; two-class algorithms achieve AUCs between 0.5 and 0.84, depending on the available number of cases from the minority class.
CONCLUSION: One-class SVMs offer a viable alternative to two-class classification algorithms if class distribution is heavily imbalanced.
Original language | English |
---|---|
Pages (from-to) | 172-176 |
Number of pages | 5 |
Journal | AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium |
Volume | 2010 |
Publication status | Published - 2010 |
Keywords
- Algorithms
- Artificial Intelligence
- Humans
- Melanoma
- Neural Networks, Computer
- Prognosis
- ROC Curve
- Support Vector Machine