Macro-economic Time Series Modeling and Interaction Networks

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Macro-economic models describe the dynamics of economic quantities. The estimations and forecasts produced by such models play a substantial role for financial and political decisions. In this contribution we describe an approach based on genetic programming and symbolic regression to identify variable interactions in large datasets. In the proposed approach multiple symbolic regression runs are executed for each variable of the dataset to find potentially interesting models. The result is a variable interaction network that describes which variables are most relevant for the approximation of each variable of the dataset. This approach is applied to a macro-economic dataset with monthly observations of important economic indicators in order to identify potentially interesting dependencies of these indicators. The resulting interaction network of macro-economic indicators is briefly discussed and two of the identified models are presented in detail. The two models approximate the help wanted index and the CPI inflation in the US.

Original languageEnglish
Pages (from-to)101-110
Number of pages10
JournalLecture Notes in Computer Science
Volume6625
Issue numberPART 2
DOIs
Publication statusPublished - Apr 2011

Keywords

  • Genetic programming
  • Finance
  • Econometrics

Fingerprint

Dive into the research topics of 'Macro-economic Time Series Modeling and Interaction Networks'. Together they form a unique fingerprint.

Cite this