TY - JOUR
T1 - Machine learning-based risk profile classification of patients undergoing elective heart valve surgery
AU - Bodenhofer, Ulrich
AU - Haslinger-Eisterer, Bettina
AU - Minichmayer, Alexander
AU - Hermanutz, Georg
AU - Meier, Jens
N1 - Publisher Copyright:
© 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
PY - 2021/5/29
Y1 - 2021/5/29
N2 - OBJECTIVES: Machine learning methods potentially provide a highly accurate and detailed assessment of expected individual patient risk before elective cardiac surgery. Correct anticipation of this risk allows for the improved counselling of patients and avoidance of possible complications. We therefore investigated the benefit of modern machine learning methods in personalized risk prediction for patients undergoing elective heart valve surgery. METHODS: We performed a monocentric retrospective study in patients who underwent elective heart valve surgery between 1 January 2008 and 31 December 2014 at our centre. We used random forests, artificial neural networks and support vector machines to predict the 30-day mortality from a subset of 129 available demographic and preoperative parameters. Exclusion criteria were reoperation of the same patient, patients who needed anterograde cerebral perfusion due to aortic arch surgery and patients with grown-up congenital heart disease. Finally, the cohort consisted of 2229 patients with a 30-day mortality of 3.86% (86 of 2229 cases). This trial has been registered at clinicaltrials.gov (NCT03724123). RESULTS: The final random forest model trained on the entire data set provided an out-of-bag area under the receiver operator characteristics curve (AUC) of 0.839, which significantly outperformed the European System for Cardiac Operative Risk Evaluation (EuroSCORE) (AUC = 0.704) and a model trained only on the subset of features EuroSCORE uses (AUC = 0.745). CONCLUSIONS: Advanced machine learning methods can predict outcomes of valve surgery procedures with higher accuracy than established risk scores based on logistic regression on pre-selected parameters. This approach is generalizable to other elective high-risk interventions and allows for training models to the cohorts of specific institutions
AB - OBJECTIVES: Machine learning methods potentially provide a highly accurate and detailed assessment of expected individual patient risk before elective cardiac surgery. Correct anticipation of this risk allows for the improved counselling of patients and avoidance of possible complications. We therefore investigated the benefit of modern machine learning methods in personalized risk prediction for patients undergoing elective heart valve surgery. METHODS: We performed a monocentric retrospective study in patients who underwent elective heart valve surgery between 1 January 2008 and 31 December 2014 at our centre. We used random forests, artificial neural networks and support vector machines to predict the 30-day mortality from a subset of 129 available demographic and preoperative parameters. Exclusion criteria were reoperation of the same patient, patients who needed anterograde cerebral perfusion due to aortic arch surgery and patients with grown-up congenital heart disease. Finally, the cohort consisted of 2229 patients with a 30-day mortality of 3.86% (86 of 2229 cases). This trial has been registered at clinicaltrials.gov (NCT03724123). RESULTS: The final random forest model trained on the entire data set provided an out-of-bag area under the receiver operator characteristics curve (AUC) of 0.839, which significantly outperformed the European System for Cardiac Operative Risk Evaluation (EuroSCORE) (AUC = 0.704) and a model trained only on the subset of features EuroSCORE uses (AUC = 0.745). CONCLUSIONS: Advanced machine learning methods can predict outcomes of valve surgery procedures with higher accuracy than established risk scores based on logistic regression on pre-selected parameters. This approach is generalizable to other elective high-risk interventions and allows for training models to the cohorts of specific institutions
KW - heart valve surgery
KW - machine learning
KW - random forest
KW - support vector machine
UR - http://www.scopus.com/inward/record.url?scp=85121915877&partnerID=8YFLogxK
U2 - 10.1093/ejcts/ezab219
DO - 10.1093/ejcts/ezab219
M3 - Article
SN - 1010-7940
VL - 60
SP - 1378
EP - 1385
JO - European Journal of Cardio-thoracic Surgery
JF - European Journal of Cardio-thoracic Surgery
IS - 6
ER -