Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study

Jakob Hochreiter, Eric Hoche, Luisa Janik, Gerd Fabian Volk, Lutz Leistritz, Christoph Anders, Orlando Guntinas-Lichius

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Surface electromyography (EMG) allows reliable detection of muscle activity in all nine intrinsic and extrinsic ear muscles during facial muscle movements. The ear muscles are affected by synkinetic EMG activity in patients with postparalytic facial synkinesis (PFS). The aim of the present work was to establish a machine-learning-based algorithm to detect eyelid closure and smiling in patients with PFS by recording sEMG using surface electromyography of the auricular muscles. Sixteen patients (10 female, 6 male) with PFS were included. EMG acquisition of the anterior auricular muscle, superior auricular muscle, posterior auricular muscle, tragicus muscle, orbicularis oculi muscle, and orbicularis oris muscle was performed on both sides of the face during standardized eye closure and smiling tasks. Machine-learning EMG classification with a support vector machine allowed for the reliable detection of eye closure or smiling from the ear muscle recordings with clear distinction to other mimic expressions. These results show that the EMG of the auricular muscles in patients with PFS may contain enough information to detect facial expressions to trigger a future implant in a closed-loop system for electrostimulation to improve insufficient eye closure and smiling in patients with PFS.

Original languageEnglish
Article number554
JournalDiagnostics
Volume13
Issue number3
DOIs
Publication statusPublished - 2 Feb 2023
Externally publishedYes

Keywords

  • auricular muscles
  • ear wiggling
  • electrophysiology
  • facial muscles
  • facial palsy
  • human
  • muscle trigger
  • support vector machine

Fingerprint

Dive into the research topics of 'Machine-Learning-Based Detecting of Eyelid Closure and Smiling Using Surface Electromyography of Auricular Muscles in Patients with Postparalytic Facial Synkinesis: A Feasibility Study'. Together they form a unique fingerprint.

Cite this