Abstract

We provide a method for visualizing the information associated with the clusters used for topic modeling of Instagram Message Feeds. For this purpose, a series of interactive dashboards are used to determine the right number of clusters and a suitable interpretation of each cluster. These extend previous approaches for regular text documents and focus on including specific information in Instagram feeds such as hashtags and linking structure.

Original languageEnglish
Title of host publication2020 24th International Conference Information Visualisation, IV 2020
EditorsEbad Banissi, Farzad Khosrow-Shahi, Anna Ursyn, Mark W. McK. Bannatyne, Joao Moura Pires, Nuno Datia, Kawa Nazemi, Boris Kovalerchuk, John Counsell, Andrew Agapiou, Zora Vrcelj, Hing-Wah Chau, Mengbi Li, Gehan Nagy, Richard Laing, Rita Francese, Muhammad Sarfraz, Fatma Bouali, Gilles Venturin, Marjan Trutschl, Urska Cvek, Heimo Muller, Minoru Nakayama, Marco Temperini, Tania Di Mascio, Filippo Sciarrone Veronica Rossano Rossano, Ralf Dorner, Loredana Caruccio, Autilia Vitiello, Weidong Huang, Michele Risi, Ugo Erra, Razvan Andonie, Muhammad Aurangzeb Ahmad, Ana Figueiras, Mabule Samuel Mabakane
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages435-439
Number of pages5
ISBN (Electronic)9781728191348
DOIs
Publication statusPublished - Sept 2020
Event24th International Conference Information Visualisation, IV 2020 - Melbourne, Australia
Duration: 7 Sept 202011 Sept 2020

Publication series

NameProceedings of the International Conference on Information Visualisation
Volume2020-September
ISSN (Print)1093-9547

Conference

Conference24th International Conference Information Visualisation, IV 2020
Country/TerritoryAustralia
CityMelbourne
Period07.09.202011.09.2020

Keywords

  • visualization
  • data clustering
  • interaction

Fingerprint

Dive into the research topics of 'InstaVis: Visualizing Clusters of Instagram Message Feeds'. Together they form a unique fingerprint.

Cite this