Improved time domain diffraction analysis for SAW transducers of arbitrary shape

M. Jungwirth, T. Greifeneder, K. Scheiblhofer, A. Stogmuller, R. Weigel, D. C. Malocha, W. Ruile, C. C.W. Ruppel

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)

Abstract

A time domain (TD) diffraction analysis for SAW transducers was previously developed based on Huygen's principle. The analysis was performed using an approximation to the scalar two dimensional impulse response of an ideal point source which allowed for fast computation of diffraction effects in the time domain. In reference [6], a more rigorous derivation of the TD impulse response from the frequency domain (FD) angular spectrum of waves (ASoW) approach for the case of isotropic phase velocity has been presented, and the extension of the analysis to include the velocity and electromechanical coupling anisotropy found in typical SAW substrates was also included. In order to be able to use the FFT for fast computation an equidistant sampling in the time domain must be evaluated. The present paper will report on an improved resampling-algorithm with a particular weighting to obtain the required equidistant impulses in the time-response, to be able to use the Fast Fourier Transform. Arbitrary transducer geometries can be dealt with by our TD technique. Numerical simulation results (impulse and frequency responses) for specific geometries will be presented.

Original languageEnglish
Pages (from-to)97-100
Number of pages4
JournalProceedings of the IEEE Ultrasonics Symposium
Volume1
DOIs
Publication statusPublished - 1999
Event1999 IEEE Ultrasonics Symposium - Caesars Tahoe, NV, USA
Duration: 17 Oct 199920 Oct 1999

Fingerprint Dive into the research topics of 'Improved time domain diffraction analysis for SAW transducers of arbitrary shape'. Together they form a unique fingerprint.

Cite this