Abstract
For computer-based diagnostics on high-resolution 3D angiography, precise modeling of anatomy is inevitable for facilitating reliable results. Thereby the process of classification normally covers pre-processing steps, a segmentation task and the classification itself generally utilizing a priori knowledge. The quality of the applied a priori model, e.g. an atlas for cortical-center classification, is deciding for the accuracy of the classification. Anatomical variations of vascularization-dependent partitioning in succession of vessel bypasses can hardly be considered by deforming an atlas. We present a classification algorithm utilizing alternately applied dilation kernels for iteratively assigning the tissue to classify according to the distance from the sustaining vessel systems to improve the expressiveness and validity of the analysis and models for medical diagnostics.
The discussed classification strategy has been successfully applied to Coui-naud’s liver lobe classification on contrast enhanced CT data and is currently being evaluated for vascularization-dependent classification of the brain into Brodmann’s areas in the context of neurosurgery.
Original language | English |
---|---|
Title of host publication | Tagungsband des 4. Forschungsforum der österreichischen Fachhochschulen |
Publisher | FH Burgenland (Fachhochschulstudiengänge Burgenland GesmbH |
Pages | 79-84 |
ISBN (Print) | 978-3-200-01809-9 |
Publication status | Published - 2010 |
Event | FFH 2010 - 4. Forschungsforum der österreichischen Fachhochschulen - Pinkafeld, Austria Duration: 7 Apr 2010 → 8 Apr 2010 http://www.fh-burgenland.at/events/ffh2010.asp |
Conference
Conference | FFH 2010 - 4. Forschungsforum der österreichischen Fachhochschulen |
---|---|
Country/Territory | Austria |
City | Pinkafeld |
Period | 07.04.2010 → 08.04.2010 |
Internet address |