TY - GEN
T1 - FiberScout
T2 - 2014 7th IEEE Pacific Visualization Symposium, PacificVis 2014
AU - Weissenböck, Johannes
AU - Amirkhanov, Artem
AU - Li, Weimin
AU - Reh, Andreas
AU - Amirkhanov, Aleksandr
AU - Gröller, Eduard
AU - Kastner, Johann
AU - Heinzl, Christoph
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - Advanced composites such as fiber reinforced polymers are promising candidate materials for future components as they allow integrating the continuously rising demands of industry regarding cost-effectiveness, function-orientation, integration and weight. The most important structures of fiber reinforced polymers are the individual fibers, as their characteristics (stiffness, strength, ductility, durability, etc.) to a large extent determine the properties of the final component. The main contribution of this paper is the introduction of a new system for interactive exploration and visual analysis of fiber properties in X-ray computed tomography data of fiber reinforced polymers. The presented tool uses parallel coordinates to define and configure initial fiber classes. Using a scatter plot matrix linked to the parallel coordinates the initial classification may be refined. This allows to analyze hidden relationships between individual fiber properties. 2D and 3D views depict the resulting fiber classifications. By using polar plots an intuitive rendering of the fiber orientation distribution is provided. In addition, two modules of higher abstraction are proposed: The Blob visualization creates a hull around fibers with similar characteristics. The fiber metadata visualization allows to calculate overlays for 2D and 3D views containing regional information of particular material characteristics. The proposed system has been evaluated by two groups of domain experts. Applying the presented concepts the user feedback shows that the domain experts are now able to efficiently perform tasks as classification of fibers, visualization of fiber lengths and orientations, and visualization of fiber regions. The insights gained can be forwarded to the design office as well as to material development and simulation, in order to speed up the development of novel composite components.
AB - Advanced composites such as fiber reinforced polymers are promising candidate materials for future components as they allow integrating the continuously rising demands of industry regarding cost-effectiveness, function-orientation, integration and weight. The most important structures of fiber reinforced polymers are the individual fibers, as their characteristics (stiffness, strength, ductility, durability, etc.) to a large extent determine the properties of the final component. The main contribution of this paper is the introduction of a new system for interactive exploration and visual analysis of fiber properties in X-ray computed tomography data of fiber reinforced polymers. The presented tool uses parallel coordinates to define and configure initial fiber classes. Using a scatter plot matrix linked to the parallel coordinates the initial classification may be refined. This allows to analyze hidden relationships between individual fiber properties. 2D and 3D views depict the resulting fiber classifications. By using polar plots an intuitive rendering of the fiber orientation distribution is provided. In addition, two modules of higher abstraction are proposed: The Blob visualization creates a hull around fibers with similar characteristics. The fiber metadata visualization allows to calculate overlays for 2D and 3D views containing regional information of particular material characteristics. The proposed system has been evaluated by two groups of domain experts. Applying the presented concepts the user feedback shows that the domain experts are now able to efficiently perform tasks as classification of fibers, visualization of fiber lengths and orientations, and visualization of fiber regions. The insights gained can be forwarded to the design office as well as to material development and simulation, in order to speed up the development of novel composite components.
KW - Methodology and Techniques-Interaction techniques
UR - http://www.scopus.com/inward/record.url?scp=84899549105&partnerID=8YFLogxK
U2 - 10.1109/PacificVis.2014.52
DO - 10.1109/PacificVis.2014.52
M3 - Conference contribution
SN - 9781479928736
T3 - IEEE Pacific Visualization Symposium
SP - 153
EP - 160
BT - Proceedings - 2014 IEEE Pacific Visualization Symposium, PacificVis 2014
PB - IEEE Computer Society
Y2 - 4 March 2014 through 7 March 2014
ER -