Feature selection for unsupervised learning via comparison of distance matrices

Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

Abstract

Feature selection for unsupervised learning is generally harder than for supervised learning, because the former lacks the class information of the latter, and thus an obvious way by which to measure the quality of a feature subset. In this paper, we propose a new method based on representing data sets by their distance matrices, and judging feature combinations by how well the distance matrix using only these features resembles the distance matrix of the full data set. Using articial data for which the relevant features were known, we observed that the results depend on the data dimensionality, the fraction of relevant features, the overlap between clusters in the relevant feature subspaces, and how to measure the similarity of distance matrices. Our method consistently achieved higher than 80% detection rates of relevant features for a wide variety of experimental configurations.

Original languageEnglish
Title of host publicationComputer Aided Systems Theory, EUROCAST 2013 - 14th International Conference, Revised Selected Papers
PublisherSpringer
Pages203-210
Number of pages8
EditionPART 1
ISBN (Print)9783642538551
DOIs
Publication statusPublished - 2013
Event14th International Conference on Computer Aided Systems Theory, Eurocast 2013 - Las Palmas de Gran Canaria, Spain
Duration: 10 Feb 201315 Feb 2013

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume8111 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Computer Aided Systems Theory, Eurocast 2013
Country/TerritorySpain
CityLas Palmas de Gran Canaria
Period10.02.201315.02.2013

Keywords

  • dimensionality reduction
  • distance matrix similarity
  • feature extraction
  • Unsupervised feature selection

Fingerprint

Dive into the research topics of 'Feature selection for unsupervised learning via comparison of distance matrices'. Together they form a unique fingerprint.

Cite this