TY - JOUR
T1 - Enhanced infrared heating of thermoplastic composite sheets for thermoforming processes
AU - Längauer, M.
AU - Zitzenbacher, G.
AU - Burgstaller, C.
AU - Hochenauer, C.
N1 - Publisher Copyright:
© 2021 Carl Hanser Verlag. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50 %.
AB - Thermoforming of thermoplastic composites attracts increasing attention in the community due to the mechanical performance of these materials and their recyclability. Yet there are still difficulties concerning the uniformity of the heating and overheating of parts prior to forming. The need for higher energy efficiencies opens new opportunities for research in this field. This is why this study presents a novel experimental method to classify the efficiency of infrared heaters in combination with different thermoplastic composite materials. In order to evaluate this, different organic sheets are heated in a laboratory scale heating station until a steady state condition is reached. This station mimics the heating stage of an industrial composite thermoforming device and allows sheets to slide on top of the pre-heated radiator at a known distance. By applying thermodynamic balances, the efficiency of chosen parameters and setups is tested. The tests show that long heating times are required and the efficiency of the heating is low. Furthermore, the efficiency is strongly dependent on the distance of the heater to the sheet, the heater temperature and also the number of heating elements. Yet, using a full reflector system proves to have a huge effect and the heating time can be decreased by almost 50 %.
UR - http://www.scopus.com/inward/record.url?scp=85102418928&partnerID=8YFLogxK
U2 - 10.1515/ipp-2020-3923
DO - 10.1515/ipp-2020-3923
M3 - Article
AN - SCOPUS:85102418928
SN - 0930-777X
VL - 36
SP - 35
EP - 43
JO - International Polymer Processing
JF - International Polymer Processing
IS - 1
ER -