Combining deep learning with token selection for patient phenotyping from electronic health records

Zhen Yang, Matthias Dehmer, Olli Yli-Harja, Frank Emmert-Streib

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Artificial intelligence provides the opportunity to reveal important information buried in large amounts of complex data. Electronic health records (eHRs) are a source of such big data that provide a multitude of health related clinical information about patients. However, text data from eHRs, e.g., discharge summary notes, are challenging in their analysis because these notes are free-form texts and the writing formats and styles vary considerably between different records. For this reason, in this paper we study deep learning neural networks in combination with natural language processing to analyze text data from clinical discharge summaries. We provide a detail analysis of patient phenotyping, i.e., the automatic prediction of ten patient disorders, by investigating the influence of network architectures, sample sizes and information content of tokens. Importantly, for patients suffering from Chronic Pain, the disorder that is the most difficult one to classify, we find the largest performance gain for a combined word- and sentence-level input convolutional neural network (ws-CNN). As a general result, we find that the combination of data quality and data quantity of the text data is playing a crucial role for using more complex network architectures that improve significantly beyond a word-level input CNN model. From our investigations of learning curves and token selection mechanisms, we conclude that for such a transition one requires larger sample sizes because the amount of information per sample is quite small and only carried by few tokens and token categories. Interestingly, we found that the token frequency in the eHRs follow a Zipf law and we utilized this behavior to investigate the information content of tokens by defining a token selection mechanism. The latter addresses also issues of explainable AI.

Original languageEnglish
Article number1432
Pages (from-to)1432
JournalScientific Reports
Volume10
Issue number1
DOIs
Publication statusPublished - 1 Dec 2020

Keywords

  • Artificial Intelligence
  • Biostatistics/methods
  • Chronic Pain/diagnosis
  • Computational Biology
  • Deep Learning
  • Electronic Health Records/standards
  • Humans
  • Machine Learning
  • Neural Networks, Computer
  • Phenotype

Fingerprint

Dive into the research topics of 'Combining deep learning with token selection for patient phenotyping from electronic health records'. Together they form a unique fingerprint.

Cite this