Abstract
The behavior and actions of the human adaptive immune system and its key players, namely B and T cells, are often hard to understand in their entirety. We here present a workflow for modelling the states of adaptive immune systems by analyzing B and T cell receptor repertoires using next-generation sequencing data. For our workflow, we have blood and kidney tissues from diseased patients, who suffered from different kidney diseases (e.g., renal carcinoma), and healthy proband. A set of features based on clonal expansion and diversity of immunoglobulins and T cell receptor next-generation sequencing data, isolated from patients, are calculated. Using different machine learning methods such as support vector machines, random forests, artificial neural networks and genetic programming in HeuristicLab, we are able to classify and distinguish between healthy and diseased individuals up to 80% accuracy using ImmunExplorer.
Original language | English |
---|---|
Title of host publication | Computer Aided Systems Theory – EUROCAST 2015 - 15th International Conference, Revised Selected Papers |
Editors | Franz Pichler, Roberto Moreno-Díaz, Alexis Quesada-Arencibia |
Publisher | Springer |
Pages | 302-309 |
Number of pages | 8 |
ISBN (Print) | 9783319273396 |
DOIs | |
Publication status | Published - 2015 |
Event | 15th International Conference on Computer Aided Systems Theory, Eurocast 2015 - Las Palmas, Gran Canaria, Spain Duration: 8 Feb 2015 → 13 Feb 2015 http://eurocast2015.fulp.ulpgc.es/ |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 9520 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 15th International Conference on Computer Aided Systems Theory, Eurocast 2015 |
---|---|
Country/Territory | Spain |
City | Las Palmas, Gran Canaria |
Period | 08.02.2015 → 13.02.2015 |
Internet address |
Keywords
- Clonality and diversity feature extraction
- Heuristiclab
- IG and TR immune repertoire
- Immunexplorer
- Machine learning