TY - JOUR
T1 - Characterization of polyurethane-based synthetic vertebrae for spinal cement augmentation training
AU - Hollensteiner, Marianne
AU - Botzenmayer, Melanie
AU - Fürst, David
AU - Winkler, Martin
AU - Augat, Peter
AU - Sandriesser, Sabrina
AU - Schrödl, Falk
AU - Esterer, Benjamin
AU - Gabauer, Stefan
AU - Püschel, Klaus
AU - Schrempf, Andreas
PY - 2018/9/29
Y1 - 2018/9/29
N2 - Vertebral augmentation techniques are used to stabilize impacted vertebrae. To minimize intraoperative risks, a solid education of surgeons is desirable. Thus, to improve education of surgeons as well as patient safety, the development of a high-fidelity simulator for the surgical training of cement augmentation techniques was initiated. The integrated synthetic vertebrae should be able to provide realistic haptics during all procedural steps. Synthetic vertebrae were developed, tested and validated with reference to human vertebrae. As a further reference, commercially available vertebrae surrogates for orthopedic testing were investigated. To validate the new synthetic vertebrae, characteristic mechanical parameters for tool insertion, balloon dilation pressure and volume were analyzed. Fluoroscopy images were taken to evaluate the bone cement distribution. Based on the measurement results, one type of synthetic vertebrae was able to reflect the characteristic parameters in comparison to human vertebrae. The different tool insertion forces (19.7 ± 4.1, 13.1 ± 0.9 N, 1.5 ± 0.2 N) of the human reference were reflected by one bone surrogate (11.9 ± 9.8, 24.3 ± 3.9 N, 2.4 ± 1.0 N, respectively). The balloon dilation pressure (13.0 ± 2.4 bar), volume (2.3 ± 1.5 ml) of the synthetic vertebrae were in good accordance with the human reference (10.7 ± 3.4 bar, 3.1 ± 1.1 ml). Cement application forces were also in good accordance whereas the cement distribution couldn’t be reproduced accurately. Synthetic vertebrae were developed that delivered authentic haptics during transpedicular instrument insertion, balloon tamp dilation and bone cement application. The validated vertebra model will be used within a hybrid simulator for minimally invasive spine surgery to educate and train surgeons.
AB - Vertebral augmentation techniques are used to stabilize impacted vertebrae. To minimize intraoperative risks, a solid education of surgeons is desirable. Thus, to improve education of surgeons as well as patient safety, the development of a high-fidelity simulator for the surgical training of cement augmentation techniques was initiated. The integrated synthetic vertebrae should be able to provide realistic haptics during all procedural steps. Synthetic vertebrae were developed, tested and validated with reference to human vertebrae. As a further reference, commercially available vertebrae surrogates for orthopedic testing were investigated. To validate the new synthetic vertebrae, characteristic mechanical parameters for tool insertion, balloon dilation pressure and volume were analyzed. Fluoroscopy images were taken to evaluate the bone cement distribution. Based on the measurement results, one type of synthetic vertebrae was able to reflect the characteristic parameters in comparison to human vertebrae. The different tool insertion forces (19.7 ± 4.1, 13.1 ± 0.9 N, 1.5 ± 0.2 N) of the human reference were reflected by one bone surrogate (11.9 ± 9.8, 24.3 ± 3.9 N, 2.4 ± 1.0 N, respectively). The balloon dilation pressure (13.0 ± 2.4 bar), volume (2.3 ± 1.5 ml) of the synthetic vertebrae were in good accordance with the human reference (10.7 ± 3.4 bar, 3.1 ± 1.1 ml). Cement application forces were also in good accordance whereas the cement distribution couldn’t be reproduced accurately. Synthetic vertebrae were developed that delivered authentic haptics during transpedicular instrument insertion, balloon tamp dilation and bone cement application. The validated vertebra model will be used within a hybrid simulator for minimally invasive spine surgery to educate and train surgeons.
KW - Biomechanical Phenomena
KW - Bone Cements/chemistry
KW - Bone Substitutes/chemistry
KW - Female
KW - Humans
KW - Injections
KW - Kyphoplasty
KW - Lumbar Vertebrae/chemistry
KW - Minimally Invasive Surgical Procedures
KW - Needles
KW - Polyurethanes/chemistry
KW - Spinal Fractures/surgery
UR - http://www.scopus.com/inward/record.url?scp=85054067403&partnerID=8YFLogxK
U2 - 10.1007/s10856-018-6161-2
DO - 10.1007/s10856-018-6161-2
M3 - Article
C2 - 30269238
SN - 1573-4838
VL - 29
SP - 153
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
IS - 10
M1 - 153
ER -