Biomolecule micropatterning on different polymeric substrates and its applicability for quantitative fluorescence microscopy

Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

Abstract

The absence of functional groups in many polymeric materials does not allow for the immobilization of biomolecules onto these substrates by means of common surface chemistry. However, polymeric materials play an emerging role in the development of new biomedical and biosensing devices. Here, we present an effective method for the selective functionalization of different polymeric substrates with biomolecules and give an overview of their suitability for fluorescence microscopy. For the transfer of biomolecules onto the functionalized polymeric surface, microcontact printing (µCP) is used. We have already demonstrated other approaches, e.g. photolithography, for the fabrication of micropatterns on cyclic olefin polymers (COPs) [1]. However, the implementation of photolithographic approaches for the fabrication of microstructured surfaces is expensive and labor-intensive compared to µCP. We evaluate the suitability of different polymers for biomolecule immobilization via contact angle measurement, scanning electron microscopy (SEM) and fluorescence microscopy. Furthermore, micropatterned polymeric substrates were tested for their applicability in live cell assays via total internal reflection fluorescence (TIRF) microscopy.
Original languageEnglish
Title of host publicationBiomolecule micropatterning on different polymeric substrates and its applicability for quantitative fluorescence microscopy
Publication statusPublished - 2021

Cite this