Biofunctional glycol-modified polyethylene terephthalate and thermoplastic polyurethane implants by extrusion-based additive manufacturing for medical 3D maxillofacial defect reconstruction

Matthias Katschnig, Juergen Wallner, Thomas Janics, Christoph Burgstaller, Wolfgang Zemann, Clemens Holzer

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

This work addresses the topic of extrusion-based additive manufacturing (filament-based material extrusion) of patient-specific biofunctional maxillofacial implants. The technical approach was chosen to overcome the shortcomings of medically established fabrication processes such as a limited availability of materials or long manufacturing times. The goal of the work was a successful fabrication of basic implants for defect reconstruction. The underlying vision is the implants' clinic-internal and operation-accompanying application. Following a literature search, a material selection was conducted. Digitally prepared three-dimensional (3D) models dealing with two representative mandible bone defects were printed based on the material selection. An ex-vivo model of the implant environment evaluated dimensional and fitting traits of the implants. Glycol-modified PET (PETG) and thermoplastic polyurethane (TPU) were finally selected. These plastics had high cell acceptance, good mechanical properties, and optimal printability. The subsequent fabrication process yielded two different implant strategies: the standard implant made of PETG with a build-up rate of approximately 10 g/h, and the biofunctional performance implant with a TPU shell and a PETG core with a build-up rate of approximately 4 g/h. The standard implant is meant to be intraoperatively applied, as the print time is below three hours even for larger skull defects. Standard implants proved to be well fitting, mechanically stable and cleanly printed. In addition, the hybrid implant showed particularly cell-friendly behavior due to the chemical constitution of the TPU shell and great impact stability because of the crack-absorbing TPU/PETG combination. This biofunctional constellation could be used in specific reconstructive patient cases and is suitable for pre-operative manufacturing based on radiological image scans of the defect. In summary, filament-based material extrusion has been identified as a suitable manufacturing method for personalized implants in the maxillofacial area. A further clinical and mechanical study is recommended.

Original languageEnglish
Article number1751
JournalPolymers
Volume12
Issue number8
DOIs
Publication statusPublished - 5 Aug 2020
Externally publishedYes

Keywords

  • Biofunctional implants
  • Filament-based material extrusion
  • Glycol-modified Polyethylene terephthalate (PETG)
  • Patient-specific maxillofacial implants
  • Thermoplastic polyurethane (TPU)

Fingerprint

Dive into the research topics of 'Biofunctional glycol-modified polyethylene terephthalate and thermoplastic polyurethane implants by extrusion-based additive manufacturing for medical 3D maxillofacial defect reconstruction'. Together they form a unique fingerprint.

Cite this