Abstract
In this note we present some algorithms to deal with near-rings, the appropriate algebraic structure to study non-linear functions. This is similar the role of rings in the theory of linear functions or that of groups for permutations. In particular, we give efficient algorithms that deal with big near-rings that are given by a small set of generators. In this context, generating involves composition as well as point-wise addition. In the extreme case, one transformation of a group of order n can generate a set of up to nn transformations.
Original language | English |
---|---|
Pages | 23-29 |
Number of pages | 7 |
DOIs | |
Publication status | Published - 2000 |
Externally published | Yes |
Event | Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC 2000) - St Andrews, UK Duration: 7 Aug 2000 → 9 Aug 2000 |
Conference
Conference | Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC 2000) |
---|---|
City | St Andrews, UK |
Period | 07.08.2000 → 09.08.2000 |