No photo of Lukas Kammerer
Calculated based on number of publications stored in Pure and citations from Scopus
20172024

Research activity per year

Filter
Conference contribution

Search results

  • 2024

    The Inefficiency of Genetic Programming for Symbolic Regression

    Kronberger, G., Olivetti de Franca, F., Desmond, H., Bartlett, D. J. & Kammerer, L., Sept 2024, Parallel Problem Solving from Nature – PPSN XVIII - 18th International Conference, PPSN 2024, Proceedings. Affenzeller, M., Winkler, S. M., Kononova, A. V., Bäck, T., Trautmann, H., Tušar, T. & Machado, P. (eds.). Springer, p. 273-289 17 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 15148 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

  • 2021

    Empirical analysis of variance for genetic programming based symbolic regression

    Kammerer, L., Kronberger, G. & Winkler, S., 7 Jul 2021, GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion. Association for Computing Machinery, Inc, p. 251-252 2 p. (GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

    Open Access
    2 Citations (Scopus)
  • 2020

    Data Aggregation for Reducing Training Data in Symbolic Regression

    Kammerer, L., Kronberger, G. & Kommenda, M., 2020, Computer Aided Systems Theory – EUROCAST 2019 - 17th International Conference, Revised Selected Papers. Moreno-Díaz, R., Quesada-Arencibia, A. & Pichler, F. (eds.). Springer, p. 378-386 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 12013 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

  • Identification of Dynamical Systems Using Symbolic Regression

    Kronberger, G., Kammerer, L. & Kommenda, M., 2020, Computer Aided Systems Theory – EUROCAST 2019 - 17th International Conference, Revised Selected Papers. Moreno-Díaz, R., Quesada-Arencibia, A. & Pichler, F. (eds.). Springer, p. 370-377 8 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 12013 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

    6 Citations (Scopus)
  • 2019

    New approaches for equalizing the granulate size and bulk density in mechanical recycling using heuristic approaches based on specific data analyses

    Aigner, M., Kammerer, L., Schieder, F. & Kronberger, G., 2019, Proceedings of SPE ANTEC 2019. Society of Plastics Engineers (SPE)

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

  • 2018

    Confidence-Based Ensemble Modeling in Medical Data Mining

    Kammerer, L. & Affenzeller, M., 6 Jul 2018, GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. ACM Press, p. 163-164 2 p. (GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

    1 Citation (Scopus)
  • Performance of industrial sensor data persistence in data vault

    Bachinger, F., Zenisek, J., Kammerer, L., Stimpfl, M. & Kronberger, G., 2018, 30th European Modeling and Simulation Symposium, EMSS 2018. Merkuryev, Y., Piera, M. A., Longo, F., Bruzzone, A. G., Affenzeller, M. & Jimenez, E. (eds.). DIME UNIVERSITY OF GENOA, p. 226-233 8 p. (30th European Modeling and Simulation Symposium, EMSS 2018).

    Research output: Chapter in Book/Report/Conference proceedingsConference contributionpeer-review

Your message has successfully been sent.
Your message was not sent due to an error.