Where are the arithmetic capabilities of a large language model located?

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

Language modelsareintended to process and generate text. In the extensive training process, however, theyalso develop arithmetic skills and the skills required to write programming code. In this work, we investigate whether it is possible to identifythe areas in the neurons ofthese models responsible for a specific skill. For this purpose, we consider arithmetic tasks and let a language model solve thembycompletingandextracting the activation states of the neurons via synthetically generated datasets. We then tryto reconstruct the results from individual groups of neurons using regression models to find the relevantgroups for solving the tasks. Linear regression models, regression trees, and support vector regression are used to uncover possible relationships. We identify that neuron pairs, not individual neurons, in the LLM can be identified as responsible for specific arithmetic behavior. We also find thatseveral distinct pairs of neurons in the GPT2 XLmodelare responsible for arithmetic capabilities, indicating a redundant encoding of these capabilities. In the future, this can lead to smaller models being extracted from larger ones for specific tasks.
OriginalspracheEnglisch
Seiten1-7
Seitenumfang7
DOIs
PublikationsstatusVeröffentlicht - Sep. 2024
Veranstaltung23. International Conference on Modelling and Applied Simulation MAS - La Laguna, Tenerife, Spanien
Dauer: 18 Sep. 202420 Sep. 2024
https://www.msc-les.org/mas2024/

Konferenz

Konferenz23. International Conference on Modelling and Applied Simulation MAS
Land/GebietSpanien
OrtTenerife
Zeitraum18.09.202420.09.2024
Internetadresse

Schlagwörter

  • Large language models
  • deep learning
  • Explainable AI

Fingerprint

Untersuchen Sie die Forschungsthemen von „Where are the arithmetic capabilities of a large language model located?“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren