Using smart grid data to predict next-day energy consumption and photovoltaic production

Stephan Dreiseitl, Andreas Vieider, Christoph Larch

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

The rise of sustainable energy production is a challenge for grid operators, who need to balance consumer demand with an increasingly volatile supply that is heavily dependent on weather conditions and environmental factors. Smart gird data provides fine-grained insight into consumer behavior as well as local renewable energy producers. We use data from an electric company in a region of South Tyrol to model both energy consumption as well as energy production. With a simple nearest-neighbor approach, we predict next-day load profiles for local power stations with relative error rates as low as 3 %. The energy production at these local power stations (in the form of photovoltaic power plants) can be predicted by adapting an ideal irradiation model to actual production data, stratified by varying weather conditions. Using this approach, we achieve relative errors in predicting next-day power production of 3–9% for favorable weather conditions.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2015 - 15th International Conference, Revised Selected Papers
Redakteure/-innenFranz Pichler, Roberto Moreno-Díaz, Alexis Quesada-Arencibia
Herausgeber (Verlag)Springer
Seiten228-235
Seitenumfang8
ISBN (Print)9783319273396
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung15th International Conference on Computer Aided Systems Theory, Eurocast 2015 - Las Palmas, Gran Canaria, Spanien
Dauer: 8 Feb. 201513 Feb. 2015
http://eurocast2015.fulp.ulpgc.es/

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9520
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz15th International Conference on Computer Aided Systems Theory, Eurocast 2015
Land/GebietSpanien
OrtLas Palmas, Gran Canaria
Zeitraum08.02.201513.02.2015
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using smart grid data to predict next-day energy consumption and photovoltaic production“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren