Using query extension and user feedback to improve pubmed search

Viktoria Dorfer, Sophie Anna Blank, Stephan Winkler, Thomas Kern, Gerald Petz, Patrizia Faschang

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

PubMed is a search engine that is widely used to search for medical publications. A common challenge in information retrieval, and thus also when using PubMed, is that broad search queries often result in lists of thousands of papers that are presented to the user, too narrow ones often yield small or even empty lists. To address this problem we here present a new PubMed search interface with query extension using keyword clusters generated with evolutionary algorithms to obtain more specific search results. Users can choose to add various words to their query and then rate search results; this scoring is stored in a database to enable learning from user feedback to improve keyword cluster optimization as well as query extensions. We show how users can extend PubMed queries using previously generated keyword clusters, rate query results, and use these ratings for optimizing parameters of the keyword clustering algorithms.

OriginalspracheEnglisch
Titel23rd European Modeling and Simulation Symposium, EMSS 2011
Seiten433-438
Seitenumfang6
PublikationsstatusVeröffentlicht - 2011
Veranstaltung23rd European Modeling and Simulation Symposium, EMSS 2011 - Rome, Italien
Dauer: 12 Sep 201114 Sep 2011

Publikationsreihe

Name23rd European Modeling and Simulation Symposium, EMSS 2011

Konferenz

Konferenz23rd European Modeling and Simulation Symposium, EMSS 2011
Land/GebietItalien
OrtRome
Zeitraum12.09.201114.09.2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using query extension and user feedback to improve pubmed search“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren