Using Ontologies to Express Prior Knowledge for Genetic Programming

Stefan Prieschl, Dominic Girardi, Gabriel Kronberger

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Ontologies are useful for modeling domains and can be used to capture expert knowledge about a system. Genetic programming can be used to identify statistical relationships or models from data. Combining expert knowledge as well as statistical rules identified solely from data is necessary in application domains where data is scarce and a large body of expert knowledge exists. We therefore study if the performance of genetic programming can be improved by incorporating prior knowledge from an ontology. In particular, we include prior knowledge as additional features for genetic programming. The approach is tested with six benchmark data sets where we compare the required computational effort that is necessary to find an acceptable model with and without additional features. The results show that additional features gathered from an ontology improve the performance of tree-based GP. The probability to find acceptable solutions with a fixed computational budget is increased. For noisy data sets we observed the same effect as for the data sets without noise.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Extraction - Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Proceedings
Redakteure/-innenAndreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weippl
Herausgeber (Verlag)Springer
Seiten362-376
Seitenumfang15
ISBN (Print)9783030297251
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung3rd IFIP Cross Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019 - Canterbury, Großbritannien/Vereinigtes Königreich
Dauer: 26 Aug. 201929 Aug. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11713 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz3rd IFIP Cross Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtCanterbury
Zeitraum26.08.201929.08.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Ontologies to Express Prior Knowledge for Genetic Programming“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren