Abstract

We analyze data of 18,000 patients for identifying models that are able to detect complications in the data of surgeries and other medical treatments. High quality detection models are found using data available for those patients, for whom general data as well as risk factors are available. For identifying these detection models we use explainable artificial intelligence, namely symbolic regression by genetic programming with three different levels of model complexity with respect to model size and complexity of functions used as building blocks for the identified models.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2022 - 18th International Conference, Revised Selected Papers
Untertitel18th International Conference, Las Palmas de Gran Canaria, Spain, February 20–25, 2022, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Díaz, Franz Pichler, Alexis Quesada-Arencibia
Herausgeber (Verlag)Springer
Seiten173-180
Seitenumfang8
ISBN (elektronisch)978-3-031-25312-6
ISBN (Print)978-3-031-25311-9
DOIs
PublikationsstatusVeröffentlicht - 10 Feb. 2023
Veranstaltung18th International Conference on Computer Aided Systems Theory
Eurocast 2022: EUROCAST 2022
- Las Palmas de Gran Canaria, Las Palmas, Spanien
Dauer: 20 Feb. 202225 Feb. 2022
https://eurocast2022.fulp.ulpgc.es
https://eurocast2022.fulp.ulpgc.es/

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13789 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz18th International Conference on Computer Aided Systems Theory
Eurocast 2022
KurztitelEurocast 2022
Land/GebietSpanien
OrtLas Palmas
Zeitraum20.02.202225.02.2022
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Explainable Artificial Intelligence for Data Based Detection of Complications in Records of Patient Treatments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren