Using deep learning for depth estimation and 3D reconstruction of humans

Alexander Freller, Dora Turk, Gerald A. Zwettler

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Deep learning for depth estimation from monocular video feed is a common strategy to get rough 3D surface information when an RGB-D camera is not present. Depth information is of importance in many domains such as object localization, tracking, and scene reconstruction in robotics and industrial environments from multiple camera views. The convolutional neural networks UpProjection, DORN, and Encoder/Decoder are evaluated on hybrid training datasets enriched by CGI data. The highest accuracy results are derived from the UpProjection network with a relative deviation of 1.77% to 2.69% for CAD-120 and SMV dataset respectively. It is shown, that incorporation of front and side view allows to increase the achievable depth estimation for human body images. With the incorporation of a second view the error is reduced from 6.69% to 6.16%. For the target domain of this depth estimation, the 3D human body reconstruction from aligned images in T-pose, plain silhouette reconstruction generally leads to acceptable results. Nevertheless, additionally incorporating the rough depth approximation in the future, concave areas at the chest, breast, and buttocks, currently not handled by the silhouette reconstruction, can result in more realistic 3D body models by utilizing the deep learning outcome in a hybrid approach.

OriginalspracheEnglisch
Titel32nd European Modeling and Simulation Symposium, EMSS 2020
Redakteure/-innenMichael Affenzeller, Agostino G. Bruzzone, Francesco Longo, Antonella Petrillo
Herausgeber (Verlag)DIME UNIVERSITY OF GENOA
Seiten281-287
Seitenumfang7
ISBN (elektronisch)9788885741454
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung32nd European Modeling and Simulation Symposium, EMSS 2020 - Virtual, Online
Dauer: 16 Sep. 202018 Sep. 2020

Publikationsreihe

Name32nd European Modeling and Simulation Symposium, EMSS 2020

Konferenz

Konferenz32nd European Modeling and Simulation Symposium, EMSS 2020
OrtVirtual, Online
Zeitraum16.09.202018.09.2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using deep learning for depth estimation and 3D reconstruction of humans“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren