Abstract
In this paper we present a novel method for scoring function specification and feature selection by combining unsupervised learning with supervised cross validation. A one dimensional Kohonen SOM is used to perform a clustering of object-data for a chosen subset of input features and given number of clusters. The resulting object clusters are compared with the predefined original object classes and a matching factor (score) is calculated. This score is used as criterion function for heuristic sequential feature selection.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of IEEE APCAST'12 Conference |
Seiten | 18-23 |
Publikationsstatus | Veröffentlicht - 2012 |
Veranstaltung | IEEE APCast'12 - Sydney, Australien Dauer: 6 Feb. 2012 → 8 Feb. 2012 |
Konferenz
Konferenz | IEEE APCast'12 |
---|---|
Land/Gebiet | Australien |
Ort | Sydney |
Zeitraum | 06.02.2012 → 08.02.2012 |
Schlagwörter
- classification
- clustering
- feature selection
- Kohonen SOM
- MLP