Unsupervised Neural Networks based Scoring and Feature Selection in Biological Data Analysis

Witold Jacak, Karin Pröll

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitrag

Abstract

In this paper we present a novel method for scoring function specification and feature selection by combining unsupervised learning with supervised cross validation. A one dimensional Kohonen SOM is used to perform a clustering of object-data for a chosen subset of input features and given number of clusters. The resulting object clusters are compared with the predefined original object classes and a matching factor (score) is calculated. This score is used as criterion function for heuristic sequential feature selection.
OriginalspracheEnglisch
TitelProceedings of IEEE APCAST'12 Conference
Seiten18-23
PublikationsstatusVeröffentlicht - 2012
VeranstaltungIEEE APCast'12 - Sydney, Australien
Dauer: 6 Feb. 20128 Feb. 2012

Konferenz

KonferenzIEEE APCast'12
Land/GebietAustralien
OrtSydney
Zeitraum06.02.201208.02.2012

Schlagwörter

  • classification
  • clustering
  • feature selection
  • Kohonen SOM
  • MLP

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unsupervised Neural Networks based Scoring and Feature Selection in Biological Data Analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren