Abstract
In this paper we present a novel method for scoring function specification and feature selection by combining unsupervised learning with supervised cross validation. Unsupervised clustering methods (k-means, one dimensional Kohonen SOM, fuzzy c-means) are used to perform a clustering of object-data for a chosen subset of input features and given number of clusters. The resulting object clusters are compared with the predefined original object classes and a matching factor (score) is calculated. This score is used as criterion function for heuristic sequential feature selection and novel cross selection algorithm.
Originalsprache | Englisch |
---|---|
Titel | 24th European Modeling and Simulation Symposium, EMSS 2012 |
Seiten | 232-236 |
Seitenumfang | 5 |
Publikationsstatus | Veröffentlicht - 2012 |
Veranstaltung | The 24th European Modeling & Simulation Symposium (EMSS 2012) - Vienna, Österreich Dauer: 19 Sep. 2012 → 21 Sep. 2012 http://www.msc-les.org/conf/EMSS2012/ |
Publikationsreihe
Name | 24th European Modeling and Simulation Symposium, EMSS 2012 |
---|
Konferenz
Konferenz | The 24th European Modeling & Simulation Symposium (EMSS 2012) |
---|---|
Land/Gebiet | Österreich |
Ort | Vienna |
Zeitraum | 19.09.2012 → 21.09.2012 |
Internetadresse |
Schlagwörter
- classification
- clustering
- feature selection
- k-mean
- fuzzy c-mean
- Kohonen SOM
- MLP