UNSUPERVISED LEARNING APPROACH TO FEATURE SELECTION IN BIOLOGICAL DATA ANALYSIS

Witold Jacak, Karin Pröll

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitrag

Abstract

In this paper we present a novel method for scoring function specification and feature selection by combining unsupervised learning with supervised cross validation. Unsupervised clustering methods (k-means, one dimensional Kohonen SOM, fuzzy c-means) are used to perform a clustering of object-data for a chosen subset of input features and given number of clusters. The resulting object clusters are compared with the predefined original object classes and a matching factor (score) is calculated. This score is used as criterion function for heuristic sequential feature selection and novel cross selection algorithm.
OriginalspracheEnglisch
Titel24th European Modeling and Simulation Symposium, EMSS 2012
Seiten232-236
Seitenumfang5
PublikationsstatusVeröffentlicht - 2012
VeranstaltungThe 24th European Modeling & Simulation Symposium (EMSS 2012) - Vienna, Österreich
Dauer: 19 Sep. 201221 Sep. 2012
http://www.msc-les.org/conf/EMSS2012/

Publikationsreihe

Name24th European Modeling and Simulation Symposium, EMSS 2012

Konferenz

KonferenzThe 24th European Modeling & Simulation Symposium (EMSS 2012)
Land/GebietÖsterreich
OrtVienna
Zeitraum19.09.201221.09.2012
Internetadresse

Schlagwörter

  • classification
  • clustering
  • feature selection
  • k-mean
  • fuzzy c-mean
  • Kohonen SOM
  • MLP

Fingerprint

Untersuchen Sie die Forschungsthemen von „UNSUPERVISED LEARNING APPROACH TO FEATURE SELECTION IN BIOLOGICAL DATA ANALYSIS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren