Unraveling the Macromolecular Pathways of IgG Oligomerization and Complement Activation on Antigenic Surfaces

Jürgen Strasser, Rob N. de Jong, Frank J. Beurskens, Guanbo Wang, Albert J. R. Heck, Janine Schuurman, Paul W. H. I. Parren, Peter Hinterdorfer, Johannes Preiner

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

81 Zitate (Scopus)

Abstract

IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.
OriginalspracheEnglisch
Seiten (von - bis)4787-4796
Seitenumfang10
FachzeitschriftNano Letters
Jahrgang19
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 10 Juli 2019

Schlagwörter

  • IgG hexamers
  • IgG oligomerization
  • classical complement pathway
  • C1 immune complex formation
  • high-speed atomic force microscopy
  • native mass spectrometry

Fingerprint

Untersuchen Sie die Forschungsthemen von „Unraveling the Macromolecular Pathways of IgG Oligomerization and Complement Activation on Antigenic Surfaces“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren