Understanding and Preparing Data of Industrial Processes for Machine Learning Applications

Philipp Fleck, Manfred Kügel, Michael Kommenda

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Industrial applications of machine learning face unique challenges due to the nature of raw industry data. Preprocessing and preparing raw industrial data for machine learning applications is a demanding task that often takes more time and work than the actual modeling process itself and poses additional challenges. This paper addresses one of those challenges, specifically, the challenge of missing values due to sensor unavailability at different production units of nonlinear production lines. In cases where only a small proportion of the data is missing, those missing values can often be imputed. In cases of large proportions of missing data, imputing is often not feasible, and removing observations containing missing values is often the only option. This paper presents a technique, that allows to utilize all of the available data without the need of removing large amounts of observations where data is only partially available. We do not only discuss the principal idea of the presented method, but also show different possible implementations that can be applied depending on the data at hand. Finally, we demonstrate the application of the presented method with data from a steel production plant.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2019 - 17th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Díaz, Alexis Quesada-Arencibia, Franz Pichler
Herausgeber (Verlag)Springer
Seiten413-420
Seitenumfang8
ISBN (Print)9783030450922
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung17th International Conference on Computer Aided Systems Theory, EUROCAST 2019 - Las Palmas de Gran Canaria, Spanien
Dauer: 17 Feb. 201922 Feb. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12013 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum17.02.201922.02.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Understanding and Preparing Data of Industrial Processes for Machine Learning Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren