Towards single-And multiobjective Bayesian global optimization for mixed integer problems

Kaifeng Yang, Koen Van Der Blom, Thomas Bäck, Michael Emmerich

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Bayesian Global Optimization (BGO) is a very efficient technique to optimize expensive evaluation problems. However, the application domain is limited to continuous search spaces when using a BGO algorithm. To solve mixed integer problems with a BGO algorithm, this paper adapts the heterogeneous distance function to construct the Kriging models and applies these new Kriging models in Multi-objective Bayesian Global Optimization (MOBGO). The proposed mixed integer MOBGO algorithm and the traditional MOBGO algorithm are compared on three mixed integer multi-objective optimization problems (MOP), w.r.t. The mean value of the hypervolume (HV) and the related standard deviation.

OriginalspracheEnglisch
TitelProceedings LeGO 2018 � 14th International Global Optimization Workshop
Redakteure/-innenAndre H. Deutz, Sander C. Hille, Yaroslav D. Sergeyev, Michael T. M. Emmerich
Herausgeber (Verlag)American Institute of Physics Inc.
ISBN (elektronisch)9780735417984
DOIs
PublikationsstatusVeröffentlicht - 12 Feb. 2019
Veranstaltung14th International Global Optimization Workshop, LeGO 2018 - Leiden, Niederlande
Dauer: 18 Sep. 201821 Sep. 2018

Publikationsreihe

NameAIP Conference Proceedings
Band2070
ISSN (Print)0094-243X
ISSN (elektronisch)1551-7616

Konferenz

Konferenz14th International Global Optimization Workshop, LeGO 2018
Land/GebietNiederlande
OrtLeiden
Zeitraum18.09.201821.09.2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards single-And multiobjective Bayesian global optimization for mixed integer problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren