Towards Intelligent Adaptive E-Learning Systems - Machine Learning for Learner Activity Classification

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

As adaptivity in e-learning systems has become popular during the past years, new challenges and potentials have emerged in the field of adaptive systems. Adaptation, traditionally focused on the personalization of content, is now also required for learner communication and cooperation. With the increasing complexity of adaptation tasks, the need for automated processing of usage data, information extraction and pattern detection grows. We present learner activity mining and classification as a basis for adaptation in educational systems and discuss intelligent techniques in this context. Based on real usage data, we present the results of experiments comparing the behaviour and performance of different classification algorithms.
OriginalspracheEnglisch
Titel17th Workshop on Adaptivity and User Modeling in Interactive Systems
Herausgeber (Verlag)Tectum Wissenschaftsverlag (Nomos Verlagsgesellschaft)
Seiten26-31
PublikationsstatusVeröffentlicht - 2009
Veranstaltung17th Workshop on Adaptivity and User Modeling in Interactive Systems (ABIS09) - Darmstadt, Deutschland
Dauer: 21 Sep 200923 Sep 2009

Workshop

Workshop17th Workshop on Adaptivity and User Modeling in Interactive Systems (ABIS09)
Land/GebietDeutschland
OrtDarmstadt
Zeitraum21.09.200923.09.2009

Schlagwörter

  • Adaptive Intelligent E-Learning Systems
  • Machine Learning
  • Learner Activity Classification
  • Educational Data Mining

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Intelligent Adaptive E-Learning Systems - Machine Learning for Learner Activity Classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren