The Inefficiency of Genetic Programming for Symbolic Regression

Gabriel Kronberger, Fabricio Olivetti de Franca, Harry Desmond, Deaglan J. Bartlett, Lukas Kammerer

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

We analyse the search behaviour of genetic programming (GP) for symbolic regression (SR) in search spaces that are small enough to allow exhaustive enumeration, and use an improved exhaustive symbolic regression algorithm to generate the set of semantically unique expression structures, which is orders of magnitude smaller than the original SR search space. The efficiency of GP and a hypothetical random search in this set of unique expressions is compared, whereby the efficiency is quantified via the number of function evaluations performed until a given error threshold is reached, and the percentage of unique expressions evaluated during the search after simplification to a canonical form. The results for two real-world datasets with a single input variable show that GP in such limited search space explores only a small fraction of the search space, and evaluates semantically equivalent expressions repeatedly. GP has a smaller success probability than the idealised random search for such small search spaces.

OriginalspracheEnglisch
TitelParallel Problem Solving from Nature – PPSN XVIII - 18th International Conference, PPSN 2024, Proceedings
Redakteure/-innenMichael Affenzeller, Stephan M. Winkler, Anna V. Kononova, Thomas Bäck, Heike Trautmann, Tea Tušar, Penousal Machado
Herausgeber (Verlag)Springer
Seiten273-289
Seitenumfang17
ISBN (Print)9783031700545
DOIs
PublikationsstatusVeröffentlicht - Sep. 2024
Veranstaltung18th International Conference on Parallel Problem Solving from Nature, PPSN 2024 - Hagenberg, Österreich
Dauer: 14 Sep. 202418 Sep. 2024

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band15148 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz18th International Conference on Parallel Problem Solving from Nature, PPSN 2024
Land/GebietÖsterreich
OrtHagenberg
Zeitraum14.09.202418.09.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Inefficiency of Genetic Programming for Symbolic Regression“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren