Symbolic Regression with Sampling

Michael Kommenda, Gabriel Kronberger, Michael Affenzeller, Stephan Winkler, Christoph Feilmayr, Stefan Wagner

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In this paper a way of improving the performance of genetic programming (GP) for regression tasks is presented. In general, most of the execution time is consumed during the evaluation step of an individual. Hence reducing the number of samples which are evaluated during the learning phase of the algorithm significantly reduces its execution time. A reduction of the available training samples might hamper the algorithm in its capability to learn the desired correlation. For this reason our approach evaluates each solution only on a randomly chosen part of all training samples, which is selected before the evaluation step. In the result section runs with different parameter settings of our approach and traditional genetic programming algorithms are compared regarding the solution quality and execution time to each other.
OriginalspracheEnglisch
Titel22th European Modeling and Simulation Symposium, EMSS 2010
Seiten13-18
Seitenumfang6
PublikationsstatusVeröffentlicht - 2010
Veranstaltung22nd European Modeling and Simulation Symposium EMSS 2010 - Fes, Marokko
Dauer: 13 Okt. 201015 Okt. 2010
http://emss2010.isaatc.ull.es

Publikationsreihe

Name22th European Modeling and Simulation Symposium, EMSS 2010

Konferenz

Konferenz22nd European Modeling and Simulation Symposium EMSS 2010
Land/GebietMarokko
OrtFes
Zeitraum13.10.201015.10.2010
Internetadresse

Schlagwörter

  • Genetic Programming
  • Symoblic Regression
  • Sampling
  • Machine Learning
  • Performance Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „Symbolic Regression with Sampling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren