Steel Phase Kinetics Modeling using Symbolic Regression.

David Piringer, Bernhard Bloder, Gabriel Kronberger

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We describe an approach for empirical modeling of steel phase kinetics based on symbolic regression and genetic programming. The algorithm takes processed data gathered from dilatometer measurements and produces a system of differential equations that models the phase kinetics. Our initial results demonstrate that the proposed approach allows to identify compact differential equations that fit the data. The model predicts ferrite, pearlite and bainite formation for a single steel type. Martensite is not yet included in the model. Future work shall incorporate martensite and generalize to multiple steel types with different chemical compositions.

OriginalspracheEnglisch
TitelProceedings - 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2022
Redakteure/-innenBruno Buchberger, Mircea Marin, Viorel Negru, Daniela Zaharie
Herausgeber (Verlag)IEEE
Seiten327-330
Seitenumfang4
ISBN (elektronisch)978-1-6654-6545-8
ISBN (Print)978-1-6654-6546-5
DOIs
PublikationsstatusVeröffentlicht - 2022

Publikationsreihe

NameProceedings - 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Steel Phase Kinetics Modeling using Symbolic Regression.“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren