Abstract
Magnetic induction tomography (MIT) is a technique to image the passive electrical properties (i.e. conductivity, permittivity, permeability) of biological tissues. The inverse eddy current problem is nonlinear and ill-posed, thus a Gauss-Newton one-step method in combination with four different regularization schemes is used to obtain stable solutions. Simulations with 16 excitation coils, 32 receiving coils and different spherical perturbations inside a homogeneous cylinder were computed. In order to compare the statistical properties of the reconstructed results a Monte Carlo study with a SNR of 40 dB and 20 dB was carried out. Simulated conductivity perturbations inside a homogeneous cylinder can be localized and resolved and the results prove the feasibility of difference imaging with MIT.
Originalsprache | Englisch |
---|---|
Aufsatznummer | S21 |
Seiten (von - bis) | S249-S259 |
Fachzeitschrift | Physiological Measurement |
Jahrgang | 27 |
Ausgabenummer | 5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Mai 2006 |