SOFTWARE FRAMEWORKS FOR ARTIFICIAL INTELLIGENCE: COMPARSION OF LOW-LEVEL AND HIGH-LEVEL APPROACHES

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

As nearly every artificial intelligence application is based on a framework, using the best fitting one for the task is key in developing an efficient solution quickly. Since there are two main types of frameworks, based on low and high abstraction level approaches, these two types will get compared and evaluated throughout this paper using Tensorflow and Keras as representatives. Key features of artificial intelligence frameworks for industrial applications are performance, expandability, abstraction level and therefore ease of use for rapid prototyping. All those features are major factors to keep development time and costs as low as possible, while maximizing product quality. To evaluate both approaches by these criteria a neural network classifying handwritten digits is implemented.

OriginalspracheEnglisch
Titel31st European Modeling and Simulation Symposium, EMSS 2019
Redakteure/-innenMichael Affenzeller, Agostino G. Bruzzone, Francesco Longo, Guilherme Pereira
Seiten96-102
Seitenumfang7
ISBN (elektronisch)9788885741263
PublikationsstatusVeröffentlicht - 2019
VeranstaltungProceedings of the 31st European Modeling and Simulation Symposium EMSS2019 - Lissabon, Portugal
Dauer: 17 Sep. 201920 Sep. 2019

Publikationsreihe

Name31st European Modeling and Simulation Symposium, EMSS 2019

Konferenz

KonferenzProceedings of the 31st European Modeling and Simulation Symposium EMSS2019
Land/GebietPortugal
OrtLissabon
Zeitraum17.09.201920.09.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „SOFTWARE FRAMEWORKS FOR ARTIFICIAL INTELLIGENCE: COMPARSION OF LOW-LEVEL AND HIGH-LEVEL APPROACHES“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren