Sliding window symbolic regression for predictive maintenance using model ensembles

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Predictive Maintenance (PdM) is among the trending topics in the current Industry 4.0 movement and hence, intensively investigated. It aims at sophisticated scheduling of maintenance, mostly in the area of industrial production plants. The idea behind PdM is that, instead of following fixed intervals, service actions could be planned based upon the monitored system condition in order to prevent outages, which leads to less redundant maintenance procedures and less necessary overhauls. In this work we will present a method to analyze a continuous stream of data, which describes a system’s condition progressively. Therefore, we motivate the employment of symbolic regression ensemble models and introduce a sliding-window based algorithm for their evaluation and the detection of stable and changing system states.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2017 - 16th International Conference, Revised Selected Papers
Redakteure/-innenRoberto Moreno-Diaz, Alexis Quesada-Arencibia, Franz Pichler
Herausgeber (Verlag)Springer
Seiten481-488
Seitenumfang8
ISBN (Print)9783319747170
DOIs
PublikationsstatusVeröffentlicht - 2018
Veranstaltung16th International Conference on Computer Aided Systems Theory, EUROCAST 2017 - Las Palmas de Gran Canaria, Spanien
Dauer: 19 Feb. 201724 Feb. 2017

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band10671 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th International Conference on Computer Aided Systems Theory, EUROCAST 2017
Land/GebietSpanien
OrtLas Palmas de Gran Canaria
Zeitraum19.02.201724.02.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sliding window symbolic regression for predictive maintenance using model ensembles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren