Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training

Gustavo Escobedo, Christian Ganhör, Stefan Brandl, Mirjam Augstein, Markus Schedl

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

In widely used neural network-based collaborative filtering models, users’ history logs are encoded into latent embeddings that represent the users’ preferences. In this setting, the models are capable of mapping users’ protected attributes (e.g., gender or ethnicity) from these user embeddings even without explicit access to them, resulting in models that may treat specific demographic user groups unfairly and raise privacy issues. While prior work has approached the removal of a single protected attribute of a user at a time, multiple attributes might come into play in real-world scenarios. In the work at hand, we present AdvXMultVAE which aims to unlearn multiple protected attributes (exemplified by gender and age) simultaneously to improve fairness across demographic user groups. For this purpose, we couple a variational autoencoder (VAE) architecture with adversarial training (AdvMultVAE) to support simultaneous removal of the users’ protected attributes with continuous and/or categorical values. Our experiments on two datasets, LFM-2b-100k and Ml-1m, from the music and movie domains, respectively, show that our approach can yield better results than its singular removal counterparts (based on AdvMultVAE) in effectively mitigating demographic biases whilst improving the anonymity of latent embeddings.

OriginalspracheEnglisch
TitelAdvances in Bias and Fairness in Information Retrieval - 5th International Workshop, BIAS 2024, Revised Selected Papers
Redakteure/-innenAlejandro Bellogin, Ludovico Boratto, Francesca Maridina Malloci, Mirko Marras, Styliani Kleanthous, Elisabeth Lex
Herausgeber (Verlag)Springer
Seiten91-102
Seitenumfang12
ISBN (Print)9783031719745
DOIs
PublikationsstatusVeröffentlicht - 2025
Veranstaltung5th International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2024 - Washington, USA/Vereinigte Staaten
Dauer: 18 Juli 202418 Juli 2024

Publikationsreihe

NameCommunications in Computer and Information Science
Band2227 CCIS
ISSN (Print)1865-0929
ISSN (elektronisch)1865-0937

Konferenz

Konferenz5th International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2024
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum18.07.202418.07.2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren