Simulation of Stochastic Rolling Horizon Forecast Behavior with Applied Outlier Correction to Increase Forecast Accuracy

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

A two-stage supply chain is studied in this paper where customers provide demand forecasts to a manufacturer and update these forecasts on a rolling horizon basis. Stochastic forecast errors and a forecast bias, both related to periods before delivery, are modeled. Practical observations show that planning methods implemented in ERP (enterprise resource planning) systems often lead to instabilities in production plans that temporarily increase projected demands. From the manufacturer's point of view, this behavior is observed as an outlier in the demand forecast values. Therefore, two simple outlier correction methods are developed and a simulation study is conducted to evaluate their performance concerning forecast accuracy. In detail, the magnitude of each demand forecast is evaluated and if a certain threshold is reached, the forecast is corrected. The study shows that the application of the outlier correction for forecast values leads to significant forecast accuracy improvement if such planning instabilities occur.

OriginalspracheEnglisch
Titel2021 Winter Simulation Conference, WSC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1-12
Seitenumfang12
ISBN (elektronisch)9781665433112
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 Winter Simulation Conference, WSC 2021 - Phoenix, USA/Vereinigte Staaten
Dauer: 12 Dez. 202115 Dez. 2021

Publikationsreihe

NameProceedings - Winter Simulation Conference
Band2021-December
ISSN (Print)0891-7736

Konferenz

Konferenz2021 Winter Simulation Conference, WSC 2021
Land/GebietUSA/Vereinigte Staaten
OrtPhoenix
Zeitraum12.12.202115.12.2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Simulation of Stochastic Rolling Horizon Forecast Behavior with Applied Outlier Correction to Increase Forecast Accuracy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren