Simulation Based Forecast Data Generation and Evaluation of Forecast Error Measures

Sarah Zeiml, Klaus Altendorfer, Thomas Felberbauer, Jamilya Nurgazina

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Production planning is usually performed based on customer orders or demand forecasts. The demand forecasts in production systems can either be generated by manufacturing companies themselves, i.e. forecast prediction, or they can be provided by customers. For both alternatives, forecast prediction, as well as the customer-provided forecasts, the quality of those forecasts is critical for success. In this paper, a simulation model to generate forecast data that mimic different forecast behaviors is presented. In detail, an independent forecast distribution and a forecast evolution model are investigated to discuss the value of customer-provided forecasts in comparison to the simple moving average forecast prediction method. Main findings of the paper are that Root-Mean-Square-Error and Mean-Absolute-Percentage-Error describe the forecast error well if no systematic effects are present and Mean-Percentage-Error provides a good measure for systematic effects. Furthermore, systematic effects like overbooking are significantly reducing the value of customer-provided forecast information.

OriginalspracheEnglisch
Titel2019 Winter Simulation Conference, WSC 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2119-2130
Seitenumfang12
ISBN (elektronisch)9781728132839
DOIs
PublikationsstatusVeröffentlicht - Dez. 2019
Veranstaltung2019 Winter Simulation Conference, WSC 2019 - National Harbor, USA/Vereinigte Staaten
Dauer: 8 Dez. 201911 Dez. 2019

Publikationsreihe

NameProceedings - Winter Simulation Conference
Band2019-December
ISSN (Print)0891-7736

Konferenz

Konferenz2019 Winter Simulation Conference, WSC 2019
Land/GebietUSA/Vereinigte Staaten
OrtNational Harbor
Zeitraum08.12.201911.12.2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Simulation Based Forecast Data Generation and Evaluation of Forecast Error Measures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren