Schema-based Diversification in Genetic Programming

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In genetic programming (GP), population diversity represents a key aspect of evolutionary search and a major factor in algorithm performance. In this paper we propose a new schema-based approach for observing and steering the loss of diversity in GP populations. We employ a well-known hyperschema definition from the literature to generate tree structural templates from the population's genealogy, and use them to guide the search via localized mutation within groups of individuals matching the same schema. The approach depends only on genealogy information and is easily integrated with existing GP variants. We demonstrate its potential in combination with Offspring Selection GP (OSGP) on a series of symbolic regression benchmark problems where our algorithmic variant called OSGP-S obtains superior results.
OriginalspracheEnglisch
TitelGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
Herausgeber (Verlag)ACM Press
Seiten1111-1118
Seitenumfang8
ISBN (elektronisch)9781450356183
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2018
VeranstaltungGenetic and Evolutionary Computation Conference (GECCO 2018) - Kyoto, Japan, Japan
Dauer: 15 Juli 201819 Juli 2018
http://gecco-2018.sigevo.org/

Publikationsreihe

NameGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference

Konferenz

KonferenzGenetic and Evolutionary Computation Conference (GECCO 2018)
Land/GebietJapan
OrtKyoto, Japan
Zeitraum15.07.201819.07.2018
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Schema-based Diversification in Genetic Programming“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren