Abstract
This paper presents the concept of an autonomous robotic agent combining reactive and machine learning-based algorithms. The focus is on the machine learning-based part that we implement by neural networks. A method for reducing the environment state space to a smaller conceptual world space is given. We then show how the concept of 'lifelong learning' can be implemented by neural networks in a robotic action planner.
Originalsprache | Englisch |
---|---|
Seiten | 1682-1686 |
Seitenumfang | 5 |
Publikationsstatus | Veröffentlicht - 1996 |
Extern publiziert | Ja |
Veranstaltung | Proceedings of the 1996 IEEE International Conference on Neural Networks, ICNN. Part 1 (of 4) - Washington, DC, USA Dauer: 3 Juni 1996 → 6 Juni 1996 |
Konferenz
Konferenz | Proceedings of the 1996 IEEE International Conference on Neural Networks, ICNN. Part 1 (of 4) |
---|---|
Ort | Washington, DC, USA |
Zeitraum | 03.06.1996 → 06.06.1996 |