Prostate cancer gene regulatory network inferred from RNA-seq data

Daniel Moore, Ricardo de Matos Simoes, Matthias Dehmer, Frank Emmert-Streib

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

9 Zitate (Scopus)

Abstract

Background: Cancer is a complex disease with a lucid etiology and in understanding the causation, we need to appreciate this complexity. Objective: Here we are aiming to gain insights into the genetic associations of prostate cancer through a network-based systems approach using the BC3Net algorithm. Methods: Specifically, we infer a prostate cancer Gene Regulatory Network (GRN) from a large-scale gene expression data set of 333 patient RNA-seq profiles obtained from The Cancer Genome Atlas (TCGA) database. Results: We analyze the functional components of the inferred network by extracting subnetworks based on biological process information and interpret the role of known cancer genes within each process. Furthermore, we investigate the local landscape of prostate cancer genes and discuss pathological associations that may be relevant in the development of new targeted cancer therapies. Conclusion: Our network-based analysis provides a practical systems biology approach to reveal the collective gene-interactions of prostate cancer. This allows a close interpretation of biological activity in terms of the hallmarks of cancer.

OriginalspracheEnglisch
Seiten (von - bis)38-48
Seitenumfang11
FachzeitschriftCurrent Genomics
Jahrgang20
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Prostate cancer gene regulatory network inferred from RNA-seq data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren