Prediction of stem cell differentiation in human amniotic membrane images using machine learning

Lisa Obritzberger, Daniela Borgmann, Susanne Schaller, Viktoria Dorfer, Andrea Lindenmair, Susanne Wolbank, Simone Hennerbichler, Heinz Redl, Stephan Winkler

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

Abstract

It has been shown that it is possible to differentiate viable amniotic membrane towards osteogenic lineage, i.e. bony tissue. This process of mineralization may take several weeks and can show different manifestations per sample. The tissue can only be used, when the mineralization process is advanced in a certain degree. Therefore, a forecast of the development of mineralization would be helpful to save time and resources. This paper shows how a prediction on the development of mineralization can be made by using several image processing techniques, machine learning methods, and hybrid ensembles of machine learning algorithms.

OriginalspracheEnglisch
TitelComputer Aided Systems Theory – EUROCAST 2015 - 15th International Conference, Revised Selected Papers
Redakteure/-innenFranz Pichler, Roberto Moreno-Díaz, Alexis Quesada-Arencibia
Herausgeber (Verlag)Springer
Seiten318-325
Seitenumfang8
ISBN (Print)9783319273396
DOIs
PublikationsstatusVeröffentlicht - 2015
Veranstaltung15th International Conference on Computer Aided Systems Theory, Eurocast 2015 - Las Palmas, Gran Canaria, Spanien
Dauer: 8 Feb. 201513 Feb. 2015
http://eurocast2015.fulp.ulpgc.es/

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9520
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz15th International Conference on Computer Aided Systems Theory, Eurocast 2015
Land/GebietSpanien
OrtLas Palmas, Gran Canaria
Zeitraum08.02.201513.02.2015
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Prediction of stem cell differentiation in human amniotic membrane images using machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren