Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring

J. Manuel Colmenar, Stephan M. Winkler, Gabriel Kronberger, Esther Maqueda, Marta Botella, J. Ignacio Hidalgo

Publikation: Beitrag in Buch/Bericht/TagungsbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

Diabetes mellitus is a disease that affects more than three hundreds million people worldwide. Maintaining a good control of the disease is critical to avoid not only severe long-term complications but also dangerous short-term situations. Diabetics need to decide the appropriate insulin injection, thus they need to be able to estimate the level of glucose they are going to have after a meal. In this paper we use machine learning techniques for predicting glycemia in diabetic patients. The algorithms utilize data collected from real patients by a continuous glucose monitoring system, the estimated number of carbohydrates, and insulin administration for each meal. We compare (1) non-linear regression with fixed model structure, (2) identification of prognosis models by symbolic regression using genetic programming, (3) prognosis by k-nearest-neighbor time series search, and (4) identification of prediction models by grammatical evolution. We consider predictions horizons of 30, 60, 90 and 120 minutes.

OriginalspracheEnglisch
TitelGECCO 2016 Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Conference
Redakteure/-innenTobias Friedrich
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten1393-1400
Seitenumfang8
ISBN (elektronisch)9781450343237
DOIs
PublikationsstatusVeröffentlicht - 20 Juli 2016
Veranstaltung2016 Genetic and Evolutionary Computation Conference, GECCO 2016 Companion - Denver, USA/Vereinigte Staaten
Dauer: 20 Juli 201624 Juli 2016

Publikationsreihe

NameGECCO 2016 Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Conference

Konferenz

Konferenz2016 Genetic and Evolutionary Computation Conference, GECCO 2016 Companion
Land/GebietUSA/Vereinigte Staaten
OrtDenver
Zeitraum20.07.201624.07.2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting glycemia in diabetic patients by evolutionary computation and continuous glucose monitoring“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren